SEGUNDA SECCION SECRETARIA DE ENERGIA

NORMA Oficial Mexicana NOM-003-SECRE-2002, Distribución de gas natural y gas licuado de petróleo por ductos (cancela y sustituye a la NOM-003-SECRE-1997, Distribución de gas natural).

Al margen un sello con el Escudo Nacional, que dice: Estados Unidos Mexicanos.- Comisión Reguladora de Energía.

NORMA OFICIAL MEXICANA NOM-003-SECRE-2002, DISTRIBUCION DE GAS NATURAL Y GAS LICUADO DE PETROLEO POR DUCTOS (CANCELA Y SUSTITUYE A LA NOM-003-SECRE-1997, DISTRIBUCION DE GAS NATURAL).

La Comisión Reguladora de Energía, con fundamento en los artículos 38 fracción II, 40 fracciones I, III, XIII y XVIII, 41 y 47 fracción IV y 51 de la Ley Federal sobre Metrología y Normalización; 16 y 33 fracciones I, IX y XII de la Ley Orgánica de la Administración Pública Federal; 1, 2 fracciones VI y VII, 3 fracciones XV y XXII y 4 de la Ley de la Comisión Reguladora de Energía; 40., 90., 14 fracción IV y 16 de la Ley Reglamentaria del Artículo 27 Constitucional en el Ramo del Petróleo; 28 y 34 del Reglamento de la Ley Federal sobre Metrología y Normalización; 1, 7 y 70 fracción VII del Reglamento de Gas Natural; 1, 3, 6, 87 y 88 del Reglamento de Gas Licuado de Petróleo, y 3 fracción VI inciso a), 34 y 35 del Reglamento Interior de la Secretaría de Energía, y

CONSIDERANDO

Primero. Que con fecha 19 de octubre de 2001, el Comité Consultivo Nacional de Normalización de Gas Natural y de Gas Licuado de Petróleo por Medio de Ductos, publicó en el **Diario Oficial de la Federación** el Proyecto de Norma Oficial Mexicana PROY-NOM-003-SECRE-2000, Distribución de gas natural, a efecto de recibir comentarios de los interesados.

Segundo. Que transcurrido el plazo de 60 días a que se refiere el artículo 47 fracción I de la Ley Federal sobre Metrología y Normalización para recibir los comentarios que se mencionan en el considerando anterior, el Comité Consultivo Nacional de Normalización de Gas Natural y de Gas Licuado de Petróleo por Medio de Ductos estudió los comentarios recibidos y, en los casos que estimó procedentes, modificó el Proyecto de Norma en cita.

Tercero. Que con fecha 13 de enero de 2003, se publicaron en el **Diario Oficial de la Federación** las respuestas a los comentarios recibidos al Proyecto de Norma Oficial Mexicana PROY-NOM-003-SECRE-2000, Distribución de gas natural.

Cuarto. Que como resultado de lo expuesto en los considerandos anteriores, se concluye que se ha dado cumplimiento al procedimiento que señalan los artículos 38, 44, 45, 47 y demás relativos a la Ley Federal sobre Metrología y Normalización, por lo que se expide la siguiente: Norma Oficial Mexicana NOM-003-SECRE-2002, Distribución de gas natural y gas LP por ductos.

México, D.F., a 6 de febrero de 2003.- El Presidente de la Comisión Reguladora de Energía, **Dionisio Pérez-Jácome**.- Rúbrica.- Los Comisionados: **Rubén Flores**, **Raúl Nocedal**, **Adrián Rojí** y **Raúl Monteforte**, este último también como Presidente del Comité Consultivo Nacional de Normalización de Gas Natural y Gas Licuado de Petróleo por Medio de Ductos.- Rúbricas.

NORMA OFICIAL MEXICANA NOM-003-SECRE-2002, DISTRIBUCION DE GAS NATURAL Y GAS LICUADO DE PETROLEO POR DUCTOS (CANCELA Y SUSTITUYE A LA NOM-003- SECRE-1997, DISTRIBUCION DE GAS NATURAL)

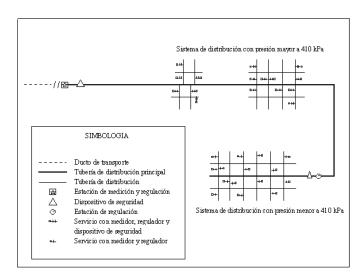
INDICE

- Introducción
- 1. Objetivo
- 2. Campo de aplicación
- 3. Referencias
- 4. Definiciones
- Criterios de diseño de tuberías
 - 5.1 Generalidades
 - 5.2 Tubería de acero
 - **5.3** Tubería de polietileno
 - 5.4 Tubería de cobre

- Materiales y equipo
 - 6.1 Generalidades
 - 6.2 Tuberías, válvulas y conexiones de acero
 - 6.3 Tuberías, válvulas y conexiones de polietileno
 - 6.4 Tuberías, válvulas y conexiones de cobre
- 7. Instalaciones
 - 7.1 Estaciones de regulación y estaciones de regulación y medición
 - 7.2 Registros
 - 7.3 Válvulas de seccionamiento y control
 - 7.4 Medidores
- 8. Construcción de la red de distribución
 - 8.1 Obra civil
 - 8.2 Separación de tuberías
 - 8.3 Procedimiento
 - 8.4 Excavación de zanjas
 - 8.5 Reparación de pisos terminados
 - 8.6 Señalización en los sistemas de distribución
 - 8.7 Instalación de tuberías de acero
 - 8.8 Protección contra corrosión en tuberías de acero
 - 8.9 Instalación de tuberías de polietileno
 - 8.10 Instalación de tubería de cobre
- 9. Tomas de servicio
- 10. Inspección y pruebas
- 11. Puesta en servicio
- 12. Mantenimiento del sistema distribución
- 13. Programa interno de protección civil
- 14. Distribución de Gas Licuado de Petróleo
- 15. Bibliografía
- 16. Concordancia con normas internacionales
- 17. Vigilancia
- 18. Vigencia
- Apéndice I. Odorización del Gas Natural
- Apéndice II. Control de la corrosión externa en tuberías de acero enterradas y/o sumergidas
- Apéndice III. Monitoreo, detección y clasificación de fugas de gas natural y gas LP en ductos
- Apéndice IV. Procedimiento de Evaluación de la Conformidad

0. Introducción

La apertura de la industria del gas natural a la iniciativa privada, en lo relativo al transporte, almacenamiento y distribución de gas natural ha hecho necesario establecer las bases bajo las cuales se debe garantizar la confiabilidad, la estabilidad, la seguridad y la continuidad de la prestación del servicio de distribución, en un entorno de crecimiento y cambios tecnológicos en esta industria. Asimismo, el transporte y distribución de gas L.P. por ductos, deben ser actividades que se realicen bajo un mínimo de requisitos de seguridad. Por lo anterior, resulta necesario contar con una Norma que establezca y actualice permanentemente las medidas de seguridad para el diseño, construcción, operación, mantenimiento y protección de los sistemas de distribución.


De conformidad con la NOM-008-SCFI-1993, Sistema general de unidades de medida, en su Tabla 21 "Reglas para la escritura de los números y su signo decimal, se señala: "El signo decimal debe ser una coma sobre la línea (,). Si la magnitud de un número es menor que la unidad, el signo decimal debe ser precedido por un cero.

1. Objeto

Esta Norma establece los requisitos mínimos de seguridad que deben cumplir los sistemas de distribución de gas natural y gas Licuado de Petróleo por medio de ductos.

2. Campo de aplicación

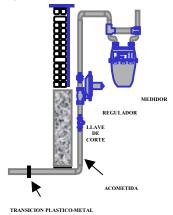
- **2.1** Esta Norma es aplicable al diseño, construcción, pruebas, inspección, operación y mantenimiento de los sistemas de distribución de gas natural y de gas LP por medio de ductos (en lo sucesivo gas), desde el punto de entrega del proveedor o transportista hasta el punto de recepción del usuario final (cuadro 1).
- **2.2** Esta Norma establece los requisitos mínimos de seguridad para un sistema de distribución de gas. No pretende ser un manual de ingeniería. En lo no previsto por la presente Norma, se deberán aplicar las prácticas internacionalmente reconocidas.

CUADRO 1.- Campo de Aplicación de la Norma

3. Referencias

La presente Norma se complementa con las normas oficiales mexicanas y normas mexicanas siguientes:

NOM-001-SECRE-1997,	Calidad del gas natural		
NOM-014-SCFI-1997,	Medidores de desplazamiento positivo tipo diafragma para gas natural o LP con capacidad máxima de 16 metros cúbicos por hora con caída de presión máxima de 200 Pa (20,4 mm de columna de agua).		
NOM-026-STPS-1998,	Colores y señales de seguridad e higiene, e identificación de riesgos por fluidos conducidos en tuberías.		
NMX-B-177-1990,	Tubos de acero al carbón con o sin costura, negros y galvanizados por inmersión en caliente.		
NMX-E-043-2002,	Industria del plástico. Tubos de polietileno (PE) para la conducción de Gas Natural (GN) y Gas Licuado de Petróleo (GLP). Especificaciones (Cancela a la NMX-E-43-1977).		
NMX-W-018-1995,	Productos de cobre y sus aleaciones-Tubos de cobre sin costura para conducción de fluidos a presión-Especificaciones y métodos de prueba.		
NMX-W-101/1-1995,	Productos de cobre y sus aleaciones-Conexiones de cobre soldables-Especificaciones y métodos de prueba.		
NMX-W-101/2-1995,	Productos de cobre y sus aleaciones-Conexiones soldables de latón-Especificaciones y métodos de prueba.		


El contenido de las normas oficiales mexicanas NOM-006-SECRE-1999, Odorización del gas natural; NOM-008-SECRE-1999, Control de la corrosión externa en tuberías de acero enterradas y/o sumergidas, y NOM-009-SECRE-2002, Monitoreo, detección y clasificación de fugas de gas natural y gas LP en ductos, se incorporan a la presente Norma en los Apéndices I, II y III, respectivamente.

4. Definiciones

Para efectos de la aplicación de esta Norma se establecen las definiciones siguientes:

- **4.1 Area unitaria:** Porción de terreno que teniendo como eje longitudinal la tubería de gas, mide 1600 metros de largo por 400 metros de ancho.
- **4.2 Caída de presión:** Pérdida de presión ocasionada por fricción u obstrucción al pasar el gas a través de tuberías, válvulas, accesorios, reguladores y medidores.
- **4.3 Camisa:** Ducto en el que se aloja una tubería conductora de gas para protegerla de esfuerzos externos.
- **4.4 Clase de localización:** Area unitaria clasificada de acuerdo a la densidad de población para el diseño de las tuberías localizadas en esa área.
- **4.5 Combustión:** Proceso químico de oxidación entre un combustible y un comburente que produce la generación de energía térmica y luminosa acompañada por la emisión de gases de combustión y partículas sólidas.
 - 4.6 Comisión: Comisión Reguladora de Energía.
 - 4.7 Corrosión: Destrucción del metal por acción electroquímica de ciertas sustancias.
- **4.8 Dispositivo de seguridad:** Elemento protector contra sobrepresión o baja presión en un sistema de distribución, por ejemplo válvulas de seguridad, reguladores en monitor, entre otros.
- **4.9 Distribuidor:** El titular de un permiso de distribución en los términos del Reglamento de Gas Natural o del Reglamento de Gas Licuado de Petróleo.
- **4.10 Ducto de ventilación:** Ducto o tubería que permite desalojar hacia la atmósfera el gas acumulado dentro de un registro o camisa subterránea.
- **4.11 Electrofusión:** Método para unir tubería de polietileno mediante el calor generado por el paso de corriente eléctrica a través de una resistencia integrada en un accesorio de unión.
 - **4.12 Energético o combustible:** Material que genera energía térmica durante el proceso de combustión.
- **4.13 Estación de regulación:** Instalación destinada a reducir y controlar la presión del gas a la salida de la instalación dentro de límites previamente definidos.
- **4.14 Estación de regulación y medición:** Instalación destinada a cuantificar el flujo de gas y controlar la presión de éste dentro de límites previamente definidos.
- **4.15 Explosión:** Reacción física y química de una mezcla combustible de gases iniciada por un proceso de combustión, seguida de la generación violenta y propagación rápida de la flama y de una onda de presión confinada, misma que al ser liberada produce daños al recipiente, estructura o elemento en el que se encontraba contenida dicha mezcla.
- **4.16 Franja de desarrollo del sistema (antes derecho de vía):** Franja de terreno donde se alojan las tuberías del sistema de distribución.
 - 4.17 Gas: Gas natural o gas Licuado de Petróleo.
 - 4.18 Gas inerte: Gas no combustible ni tóxico ni corrosivo.
- **4.19 Gas Licuado de Petróleo (gas LP):** Mezcla de hidrocarburos compuesta primordialmente por butano y propano.
 - **4.20 Gas natural:** Mezcla de hidrocarburos compuesta primordialmente por metano.
- **4.21 Gravedad específica:** Relación de la densidad de un gas con la densidad del aire seco a las mismas condiciones de presión y temperatura.
- **4.22 Instalación para el aprovechamiento:** El conjunto de tuberías, válvulas y accesorios apropiados para conducir gas desde la salida del medidor hasta los equipos de consumo.
 - 4.23 LFMN: Ley Federal sobre Metrología y Normalización.
- **4.24 Límites de explosividad:** Valores, superior e inferior, de la concentración de gas combustible disperso en el aire, entre los cuales se presenta una mezcla explosiva.
- **4.25 Línea de desvío o puenteo:** Tubería que rodea a un instrumento o aparato para desviar el flujo de gas, con el objeto de repararlo o reemplazarlo.
- **4.26 Máxima Presión de Operación Permisible (MPOP):** Es la máxima presión a la cual se puede permitir la operación de una tubería o segmento del sistema de distribución.
- **4.27 Medidor:** Instrumento utilizado para cuantificar el volumen de gas natural que fluye a través de una tubería.

- **4.28 Mezcla explosiva:** Combinación homogénea de aire con un combustible en estado gaseoso en concentraciones que producen la explosión de la mezcla al contacto con una fuente de ignición.
 - 4.29 Polietileno: Plástico basado en polímeros hechos con etileno como monómero esencial.
- **4.30 Práctica internacionalmente reconocida:** Especificaciones técnicas, metodologías o lineamientos documentados y expedidos por autoridades competentes u organismos reconocidos en el país de origen del producto, que tienen relevancia en el mercado internacional de la industria del gas natural y/o del gas Licuado de Petróleo.
 - 4.31 Presión absoluta: Suma de la presión manométrica más la presión atmosférica del lugar.
- **4.32 Presión atmosférica:** Presión que ejerce una columna de aire sobre la superficie de la tierra en cualquier punto del planeta. Al nivel medio del mar esta presión es de aproximadamente 101,33 kPa.
- **4.33 Presión de diseño:** Es el valor de la presión que se utiliza para determinar el espesor de pared de las tuberías. Esta presión debe ser igual o mayor que la MPOP de dichas tuberías.
- **4.34 Presión de operación.** Presión a la que operan normalmente los segmentos de la red de distribución.
- **4.35 Presión de prueba:** Presión a la cual es sometido el sistema antes de entrar en operación con el fin de garantizar su hermeticidad.
 - **4.36 Presión manométrica:** Presión que ejerce un gas sobre las paredes del recipiente que lo contiene.
 - 4.37 Presión: Fuerza de un fluido ejercida perpendicularmente sobre una superficie.
- **4.38 Prueba de hermeticidad:** Procedimiento utilizado para asegurar que un sistema de distribución o una parte de él, cumple con los requerimientos de no fuga y resistencia definidos en esta Norma.
- **4.39 Ramal:** Tubería secundaria conductora de gas que se deriva de la tubería principal, formando las redes o circuitos que suministran gas a las tomas de servicio de los usuarios.
- **4.40 Recubrimiento:** Material que se aplica y adhiere a las superficies externas de una tubería metálica para protegerla contra los efectos corrosivos producidos por el medio ambiente.
- **4.41 Registro:** Espacio subterráneo en forma de caja destinado a alojar válvulas, accesorios o instrumentos, para su protección.
- **4.42 Regulador de presión:** Instrumento para disminuir, controlar y mantener a una presión de salida deseada.
- **4.43 Regulador de servicio:** Regulador de presión instalado en la toma de servicio del usuario para el suministro de gas a la presión contratada con el Distribuidor.
- **4.44 Regulador en monitor:** Dispositivo de seguridad que consiste en un regulador instalado en serie al regulador principal y calibrado a una presión ligeramente superior a la de salida de éste para proteger a la instalación de una sobrepresión debida a una falla del regulador principal.
- **4.45 Resistencia mínima de cedencia (RMC):** Valor mínimo de resistencia a la cedencia o fluencia especificado por el fabricante de la tubería.
- **4.46 SDR:** En tubos de polietileno, es la relación del diámetro exterior promedio especificado entre el espesor de pared mínimo especificado.
- **4.47 Sistema de distribución:** El conjunto de ductos, compresores, reguladores, medidores y otros equipos para recibir, conducir, entregar gas por medio de ductos.
- **4.48 Toma o acometida de servicio:** Tramo de tubería a través del cual el distribuidor suministra gas a los usuarios, de acuerdo con el esquema siguiente:

- 4.49 Trazo: La trayectoria de la tubería destinada a la conducción de gas natural.
- **4.50 Tubería principal de distribución:** Tubería a través de la cual se abastecen los ramales del sistema de distribución de gas.
- **4.51 Unidad de Verificación (UV):** La persona acreditada y aprobada en los términos de la Ley Federal sobre Metrología y Normalización (LFMN) que realiza actos de verificación.
 - 4.52 Válvula de bloqueo: Dispositivo de cierre rápido para suspender el flujo de gas.
- **4.53 Válvula de seccionamiento:** Dispositivo instalado en la tubería para controlar o bloquear el flujo de gas hacia cualquier sección del sistema.
 - **4.54 Válvula de seguridad:** Válvula de cierre por sobre o baja presión.
 - 5. Criterios de diseño de tuberías
 - 5.1 Generalidades.
- **5.1.1** La tubería se debe seleccionar con el espesor de pared suficiente para soportar la presión de diseño de la red de distribución, y en su caso, para resistir cargas externas previstas.
- **5.1.2** La presión mínima de operación de una red de distribución debe ser aquella a la cual los usuarios reciban el gas a una presión suficiente para que sus instalaciones de aprovechamiento operen adecuada y eficientemente en el momento de máxima demanda de gas.
- **5.1.3** Cada componente de una tubería debe de resistir las presiones de operación y otros esfuerzos previstos sin que se afecte su capacidad de servicio.
- **5.1.4** Los componentes de un sistema de tuberías incluyen válvulas, bridas, accesorios, cabezales y ensambles especiales. Dichos componentes deben estar diseñados de acuerdo con los requisitos aplicables de esta Norma, considerando la presión de operación y otras cargas previstas.
 - **5.1.5** Los componentes de un sistema de tuberías deben cumplir con lo siguiente:
 - a) Las normas oficiales mexicanas, las normas mexicanas y en lo no previsto por ellas, con las prácticas internacionalmente reconocidas aplicables, y
 - **b)** Estar libres de defectos que puedan afectar o dañar la resistencia, hermeticidad o propiedades del componente.
 - 5.2 Tubería de acero.
- **5.2.1.** Los tubos de acero que se utilicen para la conducción de gas deben cumplir con la Norma Mexicana NMX-B-177-1990. El espesor mínimo de la tubería se calcula de acuerdo con la fórmula siguiente:

$$t = \frac{P \times D}{2 \times S \times F \times E \times T}$$

Donde:

- t espesor de la tubería en milímetros;
- P presión manométrica de diseño en kPa;
- D diámetro exterior de la tubería en milímetros;
- S resistencia mínima de cedencia (RMC) en kPa;
- F factor de diseño por densidad de población;
- E factor de eficiencia de la junta longitudinal de la tubería, y
- T factor de corrección por temperatura del gas; T = 1 si la temperatura del gas es igual o menor a 393 K.
- **5.2.2** Factor de diseño por densidad de población "F". El factor de diseño se selecciona en función de la clase de localización, el cual se debe emplear en la fórmula del inciso 5.2.1 de esta Norma. Dicho factor se encuentra en el cuadro 2.

CUADRO 2 Factor de diseño por densidad de población (F)

•	• • • •
Clase de localización	F
1	0,72
2	0,60
3	0,50
4	0,40

- **5.2.2.1** Localización clase 1. El área unitaria que cuenta con diez o menos construcciones para ocupación humana.
- **5.2.2.2** Localización clase 2. El área unitaria con más de diez y hasta cuarenta y cinco construcciones para ocupación humana.
- **5.2.2.3** Localización clase 3. El área unitaria que cuenta con cuarenta y seis construcciones o más para ocupación humana.

El tramo de una tubería clase 1 o 2 será reclasificado como clase 3 cuando el eje de dicho tramo se encuentre a una distancia igual o menor a 100 metros de:

- a) Una construcción ocupada por veinte o más personas, al menos 5 días en la semana, en 10 semanas en un periodo de 12 meses. Los días y las semanas no tienen que ser consecutivos, por ejemplo: escuelas, hospitales, iglesias, salas de espectáculos, cuarteles y centros de reunión;
- b) Un área al aire libre definida que sea ocupada por veinte o más personas, al menos 5 días a la semana, en 10 semanas en un periodo de 12 meses. Los días y las semanas no tienen que ser consecutivos, por ejemplo: campos deportivos, áreas recreativas, teatro al aire libre u otro lugar público de reunión, o
- c) Un área destinada a fraccionamiento o conjunto habitacional o comercial que no tenga las características de la clase 4.
- **5.2.2.4** Localización clase 4. El área unitaria en la que predominan construcciones de cuatro o más niveles incluyendo la planta baja, donde el tráfico vehicular es intenso o pesado y donde pueden existir numerosas instalaciones subterráneas.
 - 5.2.3 El cuadro 3 presenta los valores de E para varios tipos de tubería.

CUADRO 3
Factor de eficiencia de la junta longitudinal soldada (E)

Clase de tubería	E
Sin costura	1,00
Soldada por resistencia eléctrica	1,00
Soldada a tope en horno	0,60
Soldada por arco sumergido	1,00
Tubería sin identificación con diámetro mayor de 101 mm	0,80
Tubería sin identificación con diámetro menor de 101 mm	0,60

- 5.3 Tubería de polietileno.
- **5.3.1** Los tubos de polietileno que se utilicen para la conducción de gas deben cumplir con la Norma Mexicana NMX-E-043-2002.
- **5.3.2** Cuando se utilice tubería de polietileno para la conducción de gas, la máxima presión de operación de la tubería debe ser igual o menor a la presión de diseño, la cual se determina con alguna de las fórmulas siguientes:

$$P = 2Sh \times \frac{t}{D-t} \times 0.32$$

$$P = 2Sh \times \frac{1}{(SDR - 1)} \times 0.32$$

Donde:

- P presión manométrica de diseño en kPa;
- Sh resistencia hidrostática a largo plazo en kPa, determinada a una temperatura de 296 K; 311 K; 322 K o 333 K. Para gas LP se debe aplicar el valor determinado a 333 K;
- t espesor de la tubería en milímetros, y
- D diámetro exterior de la tubería en milímetros.

SDR relación del diámetro exterior promedio especificado entre el espesor de pared mínimo especificado.

- **5.3.3** Limitaciones de diseño de la tubería de polietileno:
- a) La presión de diseño no debe exceder la presión manométrica de 689 kPa, y
- b) No se debe usar tubería de polietileno cuando la temperatura de operación del material sea menor de 244 K, o mayor que la temperatura a la cual se determinó el valor resistencia hidrostática a largo plazo (Sh) que se aplicó en la fórmula del inciso 5.3.2 para calcular la presión de diseño. En ningún caso puede exceder 333 K.
- c) El espesor de pared de los tubos de polietileno no debe ser menor de 1,57 mm.
- **5.4** Tubería de cobre.
- **5.4.1** Los tubos de cobre que se utilicen en la red de distribución deben ser estirados en frío y deben cumplir con la Norma Mexicana NMX-W-018-1995.
 - 5.4.2 El espesor de pared de los tubos de cobre utilizados en la red debe cumplir con lo siguiente:
- a) Los tubos de cobre utilizados en tuberías principales y ramales deben tener un espesor mínimo de 1,65 mm, y
- **b)** Para tomas de servicio, se debe utilizar tubería de cobre de diámetro mayor o igual de 12,7 mm (½") y cumplir con lo establecido en la Norma NMX-W-018-1995.
- **5.4.3** La tubería de cobre usada en líneas de distribución y tomas de servicio no puede ser usada bajo presiones que excedan los 689 kPa manométrica.

6. Materiales y equipo

- **6.1** Generalidades. Los materiales y equipos que forman parte de un sistema de distribución de gas natural deben cumplir con lo siguiente:
- **6.1.1** Mantener la integridad estructural del sistema de distribución bajo temperaturas y otras condiciones ambientales que puedan ser previstas y operar a las condiciones a que estén sujetos;
- **6.1.2** Ser compatibles químicamente con el gas que conduzcan y con cualquier otro material de la red de distribución con que tengan contacto, y
- **6.1.3** Ser diseñados, instalados y operados de acuerdo con las especificaciones contenidas en esta Norma.
 - 6.2 Tuberías, válvulas y conexiones de acero.
- **6.2.1** Los tubos de acero que se utilicen para la conducción de gas deben cumplir con la Norma Mexicana NMX-B-177-1990.
- **6.2.2** Se permite utilizar conexiones de acero al carbono, de acero forjado, con extremos soldables, bridados o roscados que permitan soportar la presión interna del gas y cualquier esfuerzo, vibración, fatiga o el propio peso de la tubería y su contenido. Las conexiones bridadas o roscadas no deben utilizarse en tuberías enterradas.
- **6.2.3** Las válvulas deben cumplir con los requisitos mínimos de seguridad establecidos en esta Norma, y en lo no previsto por ésta, deben cumplir con las prácticas internacionalmente reconocidas. No se deben utilizar válvulas bajo condiciones de operación que superen los regímenes de presión y temperatura establecidas en las especificaciones aplicables.
- **6.2.4** Las válvulas se deben probar de acuerdo con el desarrollo del sistema y antes del inicio de operaciones de una instalación, de acuerdo con las especificaciones del fabricante.
 - **6.2.5** Las válvulas se deben probar conforme con lo siguiente:
 - Cuerpo de la válvula. Con la válvula en posición "totalmente abierta", se debe probar a una presión mínima de 1,5 veces la MPOP del sistema. Durante la prueba la válvula debe cumplir con las especificaciones del fabricante;
 - b) Asiento de la válvula. Con la válvula en posición "totalmente cerrada" se debe probar a una presión mínima de 1,5 veces la MPOP del sistema. Durante la prueba la válvula debe cumplir con las especificaciones del fabricante, y
 - c) Operación de la válvula. Después de completar la última prueba de presión, la válvula se debe operar para comprobar su buen funcionamiento.

- **6.2.6** Las bridas y sus accesorios deben cumplir con las normas oficiales mexicanas, normas mexicanas, en lo no previsto por éstas, con las prácticas internacionalmente reconocidas aplicables.
- **6.2.7** Las bridas y elementos bridados deben satisfacer los requisitos establecidos en el diseño del sistema de distribución y mantener sus propiedades físicas y químicas a la presión y temperatura de operación del mismo.
 - **6.3** Tuberías, válvulas y conexiones de polietileno.
- **6.3.1** Los tubos de polietileno que se utilicen para la conducción de gas deben cumplir con la Norma Mexicana NMX-E-043-2002.
- **6.3.2** Las válvulas deben ser de cierre rápido, herméticas y con extremos soldables por termofusión o electrofusión y deben cumplir con las normas oficiales mexicanas, normas mexicanas, y en lo no previsto por éstas, con prácticas internacionalmente reconocidas aplicables.
 - 6.3.3 Conexiones.
- **6.3.3.1** La pieza de transición acero-polietileno, es una conexión constituida por un extremo de polietileno y otro extremo de acero, y su diseño debe estar de conformidad con la normatividad internacional aplicable.
- **6.3.3.2** Las conexiones y accesorios que se utilicen en tubería de polietileno (tapones, coples, reducciones, tés) deben ser soldables por termofusión o electrofusión y cumplir con las normas oficiales mexicanas, normas mexicanas, y en lo no previsto por éstas, con prácticas internacionalmente reconocidas aplicables.
- **6.3.3.3** Las conexiones mecánicas pueden ser de unión roscada a compresión, o a compresión para utilizarse de acuerdo con lo indicado por el fabricante y certificado para su uso a las condiciones de operación, de conformidad con las normas oficiales mexicanas, normas mexicanas, y en lo no previsto por éstas, con prácticas internacionalmente reconocidas aplicables.
- **6.3.3.4** El permisionario debe tener registros de que los accesorios que se utilicen en la red cumplen con las normas oficiales mexicanas, normas mexicanas o prácticas internacionalmente reconocidas aplicables.
 - 6.4 Tuberías, válvulas y conexiones de cobre.
- **6.4.1** Los tubos de cobre que se utilicen para la conducción de gas deben cumplir con la Norma Mexicana NMX-W-018-1995.
- **6.4.2** En las tuberías de cobre se deben utilizar conexiones que cumplan con las normas mexicanas NMX-W-101/1-1995 o NMX-W-101/2-1995.
- **6.4.3** Las válvulas que se utilicen en tuberías de cobre deben cumplir con las normas oficiales mexicanas, normas mexicanas, y en lo no previsto por éstas, con prácticas internacionalmente reconocidas aplicables.

7. Instalaciones

- **7.1** Estaciones de regulación y estaciones de regulación y medición.
- **7.1.1** La capacidad de las estaciones se debe determinar con base a la demanda máxima y en las presiones de entrada y salida del sistema.
 - 7.1.2 Las estaciones se deben instalar en sitios que cumplan con las condiciones siguientes:
 - a) En lugares abiertos en ambiente no corrosivo y protegidos contra daños causados por agentes externos, por ejemplo, impactos de vehículos y objetos, derrumbes, inundación, tránsito de personas o en registros subterráneos que cumplan con los requisitos del párrafo 7.2 de esta Norma.
 - **b)** A una distancia mayor de tres metros de cualquier fuente de ignición.
 - c) Estar protegidos contra el acceso de personas no autorizadas por medio de un cerco de tela ciclón, gabinete u obra civil con ventilación cruzada cuando tengan techo y espacio suficiente para el mantenimiento de la estación.
 - d) Ser accesible directamente desde la vía pública con objeto de que el distribuidor pueda realizar sus tareas de operación y mantenimiento. En todo caso, el distribuidor podrá pactar con el usuario la forma de acceso.
 - **7.1.3** No está permitido instalar estaciones en los lugares siguientes:
 - a) Bajo líneas de transmisión o transformadores de energía eléctrica. Como mínimo deben estar a una distancia de tres metros de la vertical de dichas líneas; si esta distancia no se puede cumplir se debe proteger la estación.

- b) En lugares donde el gas pueda migrar al interior de edificios, por ejemplo: bajo alguna ventana de planta baja o tomas de aire de ventilación o acondicionamiento de aire o en cubos de luz, de escaleras, de servicios de los edificios. Como mínimo deben estar a una distancia de un metro al lado de puertas y ventanas.
- c) En lugares cubiertos o confinados junto con otras instalaciones.
- **7.1.4** Las estaciones deben estar compuestas al menos por una línea de regulación y una línea de desvío. Estas líneas deben cumplir con los requisitos siguientes:
 - La línea de regulación debe contar con el regulador de presión y válvulas a la entrada y a la salida para aislar dicha línea.
 - b) Si la presión de operación de entrada a la línea de regulación es menor o igual a 410 kPa, dicha línea debe tener un elemento de seguridad por sobrepresión.
 - c) Si la presión de operación de entrada de la línea de regulación es mayor de 410 kPa, el distribuidor es responsable de determinar los elementos de protección contra sobrepresión y baja presión de dicha línea; estos elementos pueden ser uno o más, entre otros, válvulas de corte automático, válvulas de alivio o regulador monitor.
 - La línea de desvío debe contar al menos con una válvula de bloqueo o de regulación manual.
- **7.1.5** La estación debe tener válvulas de bloqueo de entrada, fácilmente accesibles a una distancia que permita su operación segura para aislar dicha estación en una emergencia.
 - 7.1.6 Las estaciones deben contar con un dispositivo de desfogue que cumpla con lo siguiente:
 - a) Estar construido en sus interiores con materiales anticorrosivos.
 - b) Estar diseñado e instalado de manera que se pueda comprobar que la válvula no está obstruida.
 - c) Tener válvulas con asientos que estén diseñados para no obstaculizar la operación del dispositivo.
- d) Contar con una tubería de salida con un diámetro no menor al diámetro de salida del dispositivo de desfogue, y de altura adecuada para conducir el gas a una zona segura para su dispersión en la atmósfera. Dicha tubería debe ser diseñada de manera que no permita la entrada de agua de lluvia, hielo, nieve o de cualquier material extraño que pueda obturarla y debe quedar sólidamente soportada.
- 7.1.7 La instalación de la estación debe estar protegida con recubrimientos anticorrosivos adecuados al entorno.
- **7.1.8** La estación debe estar aislada eléctricamente de las tuberías de entrada y salida, si éstas cuentan con protección catódica.
- **7.1.9** El aislamiento de los elementos metálicos de las estaciones, debe cumplir con lo establecido en el párrafo 3.4 del Apéndice II de esta Norma, "Control de la corrosión externa en tuberías enterradas".
- **7.1.10** Las tuberías de las estaciones deben de someterse a una prueba de hermeticidad, según se indica en la párrafo 10.6 de esta Norma, antes de entrar en operación.
- **7.1.11** Las estaciones deben tener colocado en un lugar visible, un letrero que indique el tipo de gas que maneja, el nombre de la compañía distribuidora, el número telefónico de emergencia y la identificación de la estación.
 - 7.2 Registros.
- **7.2.1** Los registros que se construyan para la instalación de válvulas, estaciones de regulación y puntos de medición o monitoreo, deben soportar las cargas externas a las que pueden estar sujetos.
- **7.2.2** El tamaño de los registros debe ser adecuado para realizar trabajos de instalación, operación y mantenimiento de los equipos.
- **7.2.3** Se pueden instalar válvulas alojadas en registros las cuales se accionan desde el exterior o en el interior del mismo.
- **7.2.4** En los registros se deben anclar y soportar las válvulas o utilizar tubería de acero a fin de soportar el peso de la válvula y el esfuerzo de torsión que provoca el accionar ésta, sólo se podrá utilizar tubería de polietileno cuando se usen válvulas del mismo material.
- **7.2.5** Los registros se deben localizar en puntos de fácil acceso, debidamente protegidos y deben ser para uso exclusivo del servicio de gas.

- 7.2.6 Los registros con un volumen interno mayor a seis metros cúbicos deben contar con ventilación que evite la formación de atmósferas explosivas en su interior. La ventilación para que los gases descargados se disipen rápidamente debe ser instalada en sitios donde no pueda dañarse.
- 7.2.7 Los ductos de ventilación se deben instalar en sitios seguros para evitar ser dañados con el fin de que los gases descargados se dispersen rápidamente. El distribuidor debe mantener funcionando el sistema de ventilación.
- 7.2.8 Los registros deben contar con drenaje propio, y éste puede ser un pozo de absorción o cárcamo. Asimismo, no deben estar conectados a la red de drenaje público.
- 7.2.9 Cada registro de válvulas desactivado se debe llenar con un material compacto adecuado, por ejemplo, arena, tierra fina, entre otros.
 - **7.3** Válvulas de seccionamiento y control.
- 7.3.1 En los sistemas de distribución se deben instalar válvulas de seccionamiento, las cuales deben estar espaciadas de tal manera que permitan minimizar el tiempo de cierre de una sección del sistema en caso de emergencia. El distribuidor debe determinar estratégicamente el espaciamiento de las válvulas con el objeto de controlar las diversas áreas del sistema.
- 7.3.2 El distribuidor debe elaborar planos que indiquen la ubicación de las válvulas de seccionamiento de cada uno de los sectores que conforman el sistema de distribución. Estos planos se deben actualizar conforme a los cambios realizados al sistema y estar disponibles para su consulta e inspección por parte de la Comisión.
 - 7.3.3 La instalación de válvulas es obligatoria en los casos siguientes:
 - Cuando exista una línea de puenteo;
 - b) A la entrada y salida de las estaciones de regulación y de regulación y medición, y
 - Cuando se instalen manómetros.
- 7.3.4 Las válvulas de seccionamiento se deben localizar en lugares de fácil acceso que permitan su mantenimiento y operación en caso de emergencia.

7.4 Medidores

- 7.4.1 Los medidores que se utilicen para el suministro de gas a los usuarios deben cumplir con lo estipulado por la LFMN.
- 7.4.2 Los medidores que el distribuidor instale en el domicilio de los usuarios de servicio residencial para suministrar gas deben cumplir con la NOM-014-SCFI-1997.
 - 7.4.3 Los medidores de gas deben contar con un certificado de calidad emitido por el fabricante.
- 7.4.4 Los medidores deben operarse de acuerdo con las condiciones indicadas del fabricante. No se debe exceder la presión de operación máxima indicada por el fabricante
- 7.4.5 Los medidores deben colocarse en lugares con ventilación adecuada para evitar que se acumule gas en caso de fuga y de fácil acceso para atención de emergencia, revisión, lectura, reemplazo y mantenimiento.
 - 7.4.6 Se debe instalar una válvula de corte de servicio en la entrada de gas de cada medidor.
 - 7.4.7 Se deben realizar pruebas de hermeticidad de las tuberías antes de instalar los medidores.
- 7.4.8 Los medidores que se instalen en líneas que operen a una presión de 410 kPa o mayor, se deben proteger con una válvula de seguridad o por cualquier otro medio que evite una presión mayor a la presión de operación del medidor. Para tal efecto se puede utilizar un regulador con válvula de seguridad integrada.
- 7.4.9 Los medidores deben contar con un soporte que evite deformaciones en la tubería de entrada y/o de salida, en caso necesario.
- 7.4.10 Cuando existan varios medidores en un espacio reducido cada uno se debe identificar con el usuario correspondiente.
- 7.4.11 Calibración. Se debe programar y llevar a cabo la calibración de los medidores utilizados en el sistema de distribución, de acuerdo con lo establecido en la LFMN.

8. Construcción de la red de distribución

- 8.1 Obra civil
- **8.1.1** La red de distribución se debe construir enterrada a las profundidades establecidas en el cuadro 5 (cinco) siguiente:

CUADRO 5
Profundidad mínima del lomo de la tubería al nivel de piso terminado

Ubicación	Excavación normal (cm)	Excavación en roca (cm)
En general		
-Tubería hasta 508 mm (20 pulg) de diámetro	60	45
-Tubería > 508 mm (20 pulg) de diámetro	75	60
En derechos de vía, de carreteras o ferrocarriles	75	60
Cruzamientos de carreteras	120	90
Cruzamientos de ferrocarriles (ver 8.1.2):		
-Tubería encamisada	120	120
-Tubería sin encamisar	200	200
Cruces de vías de agua	120	60
Bajo canales de drenaje o irrigación	75	60

- **8.1.2** En el caso de cruzamientos de ferrocarril, carreteras u obras especiales, la instalación de las tuberías se debe sujetar a las normas oficiales mexicanas o, en ausencia de éstas, a las especificaciones técnicas aplicables que haya emitido la autoridad competente. Cuando no existan tales especificaciones, se deberá cumplir con las prácticas internacionalmente reconocidas.
 - 8.2 Separación de tuberías
- **8.2.1** Las tuberías principales y ramales de distribución deben estar separadas como mínimo a 30 (treinta) centímetros del límite de propiedad. Para tuberías mayores de 254 mm, la distancia debe ser 50 (cincuenta) centímetros.
- **8.2.2** La separación mínima entre la tubería y otras estructuras subterráneas paralelas o cruzadas, debe ser de 30 (treinta) centímetros como mínimo para prevenir daños en ambas estructuras. En el caso de estructuras preexistentes a las tuberías de gas, o cuando no sea posible conservar dicha separación entre la tubería y otras estructuras subterráneas, o bien cuando la experiencia y las prácticas prudentes de ingeniería aconsejen un incremento cautelar de la protección entre las tuberías y conductos subterráneos, deberán instalarse conductos, divisiones o protecciones constituidas por materiales de adecuadas características térmicas, dieléctricas e impermeabilizantes que brinden la protección más viable y segura. En último caso, las partes podrán solicitar la intervención de las autoridades competentes para determinar la solución más factible.
- **8.2.3** Para tuberías de polietileno, la separación mínima debe ser suficiente para mantener la temperatura de operación de dicha tubería dentro del límite permitido, en caso de que la otra estructura emita calor (ductos con conductores eléctricos, vapor y agua caliente). En particular, se deben tomar precauciones para aislar la tubería de gas de cualquier fuente de calor a través del método que resulte más idóneo en función del riesgo que represente la instalación. En el caso de estructuras preexistentes a las tuberías de polietileno, se debe observar lo establecido en el inciso 8.2.2 anterior.
 - 8.3 Procedimiento
- **8.3.1** El distribuidor es responsable de aplicar el método adecuado para enterrar la tubería cumpliendo con todas las medidas de seguridad requeridas por esta norma y por las autoridades competentes.
- **8.3.2** Antes de iniciar las obras de construcción de la red, el distribuidor se debe comunicar con la autoridad local competente, con el objeto de obtener el permiso aplicable e información relativa a la localización de otros servicios públicos y anticipar la ruta de las tuberías de gas con el objeto de minimizar la afectación de esos servicios y, en su caso, contactar a las compañías responsables de proveer dichos servicios para disponer de la información de los servicios existentes.

- **8.3.3** Si durante la excavación para el tendido de la tubería del sistema de distribución se encuentran en el subsuelo derrames de combustibles líquidos, por ejemplo, gasolina, diesel, etc., o concentración de sus vapores, el distribuidor debe dar aviso a la autoridad competente antes de continuar con los trabajos de construcción.
 - 8.4 Excavación de zanjas.
- **8.4.1** La excavación de la zanja que aloja la tubería principal de distribución y sus ramales, debe cumplir con los requerimientos de ancho, profundidad y separación de la tubería para su debida instalación.
- **8.4.2** Antes de colocar la tubería en la zanja, ésta debe estar limpia, libre de basura, escombro, materiales rocosos o cortantes que pudieran ocasionar daños a las tuberías.
- **8.4.3** La superficie del fondo de la zanja se debe emparejar y afinar de tal manera que permita un apoyo uniforme de la tubería.
- **8.4.4** El distribuidor es responsable de aplicar el método adecuado para rellenar las zanjas y proteger la tubería contra daños mecánicos, para que el nivel de piso original permanezca sin alteración.
- **8.4.5** En caso de suelo rocoso, la zanja se debe rellenar inicialmente con una capa de 10 cm de cualquiera de los materiales siguientes:
 - Material producto de la excavación; éste debe estar limpio, libre de basura, escombro, materiales rocosos o cortantes que pudieran ocasionar daños a las tuberías, o
 - **b)** Material procedente de banco de materiales como arena, tierra fina o cualquier otro material similar que proteja la tubería.
 - 8.5 Reparación de pisos terminados.

Los pisos terminados tales como pavimento asfáltico, concreto hidráulico, empedrados, adoquinados, banquetas, guarniciones y andadores, que hayan sido afectados por las actividades realizadas para enterrar la tubería, se deben reparar de manera que el piso reparado tenga la misma apariencia y propiedades que tenía el piso original.

- 8.6 Señalización en los sistemas de distribución.
- 8.6.1 Señalización de tuberías de distribución.
- a) Tuberías enterradas en vía pública: Estos señalamientos se deben efectuar sobre el trazo de las tuberías que trabajan a más de 689 kPa a una distancia máxima de 100 (cien) metros. Los señalamientos seleccionados no deben interferir la vialidad de vehículos y peatones, dichos señalamientos en tuberías enterradas en los cruces de carreteras o vías de ferrocarril, se deben colocar en ambos lados del trazo de la tubería;
- b) En caso de tuberías enterradas en localización clase 1 (uno) y 2 (dos), éstas podrán señalizarse por medio de postes de concreto o acero y con letreros alusivos al contenido de la tubería "Gas Natural" y precautorios como "No excavar o hacer fuego" y con el número telefónico de emergencias de la compañía distribuidora. La compañía distribuidora debe tener planos definitivos de construcción actualizados de la red referenciados a puntos fijos de la ciudad o a sistemas de ubicación electrónica;
- Tuberías o instalaciones superficiales deben estar señalizadas de acuerdo con la NOM-026-STPS-1998 y con letreros de advertencia con las características indicadas en el inciso b);
- d) Señalamientos de advertencia. Se deben instalar en ambos lados de la tubería señalamientos con un fondo de color contrastante que indique lo siguiente: "Tubería de alta o baja presión bajo tierra", "No cavar", "Ancho de la franja de desarrollo del sistema", "Teléfonos, código del área y nombre de la instalación para casos de emergencia" y el "Nombre y logotipo del Distribuidor", y
- e) Cinta de advertencia: a una distancia sobre la tubería enterrada y antes de tapado total de la zanja se debe colocar una banda o cinta de advertencia que indique la presencia de una tubería enterrada de gas bajo ésta.
- **8.6.2** Señalización durante la construcción. Al realizar trabajos de construcción o mantenimiento en el sistema de distribución o al concluir la jornada de trabajo se deben colocar señalamientos visibles con indicaciones de advertencia sobre la existencia de la zanja y de la tubería de gas. Los letreros deben indicar el nombre del distribuidor y/o del constructor, los números telefónicos para atender quejas. El distribuidor debe acordonar el área para prevenir al público en general sobre dichos trabajos.

- 8.7 Instalación de tubería de acero.
- **8.7.1** Tendido. La tubería y materiales empleados en la construcción se deben manejar cuidadosamente, tanto en la carga como en la descarga para evitar dañarlos, especialmente, al bisel de la tubería y al recubrimiento anticorrosivo de la misma.
- **8.7.2** Doblado. El procedimiento mecánico para doblar la tubería se debe efectuar por medio de un proceso en frío para evitar una deformación en la sección circular del tubo.
 - **8.7.3** Al efectuar un doblez en el tubo es necesario observar lo siguiente:
 - El diámetro exterior del tubo no se debe reducir en cualquier punto más del 2,5% del diámetro nominal;
 - b) El doblez no debe perjudicar o limitar la funcionalidad de la tubería;
 - c) El cordón longitudinal de la tubería debe estar cerca del eje neutro del doblez;
 - El radio del doblez del eje de la tubería debe ser igual o mayor a 18 veces el diámetro exterior de la tubería;
 - e) La tubería no se debe doblar en un arco mayor de 90° (noventa grados);
 - f) El doblez debe presentar un contorno suave y estar libre de arrugas, grietas, o cualquier otro daño, y
 - g) La curva no debe estar a una distancia menor de 1,8 (metros de los extremos de la tubería, ni a una distancia menor de un metro de la soldadura de campo.
- **8.7.4** Limpieza. El cuerpo y los biseles de los tubos se deben inspeccionar antes de iniciar los trabajos de soldadura y aplicación del recubrimiento. Los biseles de los tubos se deben limpiar para eliminar cualquier material extraño a éstos. Durante esta operación se debe verificar que el tubo no presente fisuras u otros defectos. Aquellos tubos que se encuentren dañados se deben reparar o, en su caso, reemplazar. Durante la alineación de la tubería y antes de iniciar la soldadura, se debe limpiar el interior de cada tramo para eliminar residuos y objetos extraños.
- **8.7.5** Soldadura. El personal que realice trabajos de soldadura se debe calificar de conformidad con lo establecido en las normas oficiales mexicanas o, en caso de no existir éstas, en la normatividad aplicable.
- **8.7.6** Procedimientos. Los procedimientos de aplicación de soldadura se deben realizar de conformidad con lo establecido en las normas oficiales mexicanas o, en caso de no existir éstas, en la normatividad aplicable.
 - **8.7.7** Requisitos generales para realizar trabajos de soldadura:
 - a) Los trabajos de soldadura se deben realizar por un soldador calificado que tenga conocimiento y experiencia en los procedimientos de soldadura de conformidad con la normatividad aplicable. La calificación de los procedimientos de soldadura se debe determinar con pruebas destructivas establecidas en dicha normatividad, y
 - b) Cada procedimiento de soldadura se debe registrar con todo detalle en la bitácora de construcción del distribuidor, incluyendo los resultados de las pruebas de calificación del técnico soldador. Dicho registro se debe llevar a cabo y conservar siempre que se utilice cualquiera de los procedimientos seleccionados de soldadura.
 - 8.7.8 Calificación de técnicos soldadores:
 - a) Un técnico soldador se calificará de acuerdo con la normatividad aplicable;
 - b) Un técnico soldador se podrá calificar para realizar soldaduras en tubos que van a operar a una presión que produce un esfuerzo tangencial menor al 20% de la RMC, si realiza una prueba de soldadura y ésta es aceptable de acuerdo con el procedimiento de soldadura seleccionado, de conformidad con lo establecido en la normatividad aplicable. Un técnico soldador que realice soldaduras en conexiones de tuberías de servicio a tuberías principales debe realizar una prueba de soldadura como parte de la prueba de calificación. El resultado de la prueba de soldadura debe ser aprobado por personal calificado de la compañía distribuidora, y
 - c) La calificación de los soldadores debe ser avalada por personal competente que tenga los conocimientos y experiencia adecuados para realizar y calificar dichos trabajos de soldadura. Después de la calificación inicial, un técnico soldador no podrá realizar soldaduras a menos que:

- i) Se haya recalificado, por lo menos una vez cada año, o
- ii) Que dentro de los siete y medio meses anteriores, pero por lo menos dos veces al año, haya realizado:

DIARIO OFICIAL

- Trabajos de soldadura que hayan sido probados y encontrados aceptables de acuerdo con las pruebas de calificación, o
- 2. Para los soldadores que solamente trabajan en tuberías de servicio de 50 mm de diámetro o menores, se les hayan evaluado dos muestras de soldaduras, encontrándolas aceptables de acuerdo a las prácticas comunes en la industria y a la normatividad aplicable.
- **8.7.9** Restricciones a las actividades de los soldadores:
- Ningún técnico soldador debe realizar soldaduras relativas a un procedimiento preestablecido a menos que, dentro de los 6 meses anteriores, haya realizado soldaduras que hubieran requerido la aplicación de dicho procedimiento, y
- b) Un técnico soldador que haya sido calificado no puede prestar los servicios correspondientes a menos que dentro de los 6 meses anteriores haya pasado una prueba de soldadura de conformidad con la normatividad aplicable.
- 8.8 Protección contra corrosión en tuberías de acero.
- **8.8.1** Para el control de la corrosión externa en sistemas de tuberías de acero que estén enterradas, sumergidas, o expuestas a la intemperie, se debe cumplir con lo establecido en el Apéndice II de esta norma.
- **8.8.2** El recubrimiento aplicado para evitar la corrosión externa debe cumplir con lo establecido en el Capítulo 3 del Apéndice II de esta norma.
- **8.8.3** El distribuidor debe elaborar planos en los que se indique el tipo de elementos utilizados en la protección catódica.
 - 8.9 Instalación de tubería de polietileno.
 - 8.9.1 Generalidades.
 - 8.9.1.1 Se debe utilizar la tubería de polietileno de acuerdo con la NMX-E-043-2002.
- **8.9.1.2** En el lugar de trabajo, cada rollo o tramo de tubería de polietileno se debe revisar visualmente para verificar que no tenga defectos que puedan afectar sus propiedades funcionales, la tubería se debe revisar antes de bajarla a la zanja para su instalación final.
- **8.9.1.3** La tubería de polietileno debe de estar enterrada o protegida de los rayos ultravioleta y daños mecánicos, durante el almacenamiento e instalación.
- **8.9.1.4** Daños, defectos o reparaciones. Las tuberías que presenten hendiduras o rayones mayores del 10% del espesor de pared o cualquier otro daño deben ser reparadas eliminando la parte dañada.
 - **8.9.2** Uniones.
- **8.9.2.1** Conexiones de polietileno. Los procedimientos que se deben utilizar para efectuar las uniones de la tubería de polietileno con las conexiones son termofusión, electrofusión o medios mecánicos. No se debe unir tubería de polietileno por medio de uniones roscadas o fusión por flama abierta. Las uniones en tuberías de polietileno deben resistir las fuerzas longitudinales causadas por la contracción de las tuberías o por tensión provocada por cargas externas.
- **8.9.2.2** Cuando se realicen trabajos de fusión en condiciones climatológicas adversas tales como lluvia, tolvanera o tormenta de arena, se deben utilizar cubiertas o medios de protección adecuados.
 - 8.9.2.3 En la electrofusión se pueden soldar dos SDR diferentes o dos resinas diferentes.
 - 8.9.2.4 En la termofusión no se pueden soldar dos SDR diferentes o dos resinas diferentes.
- **8.9.2.5** Debe estar disponible una copia de los procedimientos para realizar las uniones en tuberías de polietileno para las personas que las efectúan e inspeccionan.
- **8.9.3** Capacitación. El personal que realice uniones en tuberías y conexiones de polietileno debe demostrar su capacidad y experiencia en este campo en conformidad con prácticas internacionalmente reconocidas.
 - 8.9.4 Recalificación. Un técnico soldador de tubería y conexiones de polietileno se debe recalificar si:
 - a) No ha realizado ninguna unión en los seis meses anteriores;
 - b) Tiene tres fallas consecutivas que resulten inaceptables, y
 - c) Cuando termine la vigencia de su certificado.

- 8.10 Instalación de tubería de cobre.
- **8.10.1** La tubería de cobre se puede instalar enterrada o arriba de la superficie del suelo. No se debe utilizar tubería de cobre cuando exista riesgo de daño mecánico en el lugar donde se va a instalar.
- **8.10.2** Las uniones de tubería de cobre rígido deben ser enchufadas y soldadas por capilaridad con soldadura fuerte de aleaciones de plata o de cobre fosforado.
- **8.10.3** La aleación utilizada debe tener un punto de fusión arriba de 811 K y no debe contener más de 0,05% de fósforo.
- **8.10.4** El personal que realice uniones en tuberías de cobre debe demostrar su capacidad y experiencia en ese campo en conformidad con prácticas internacionalmente reconocidas.
 - 8.10.5 No están permitidas las uniones a tope ni roscadas.
- **8.10.6** Para conectar válvulas o accesorios roscados se puede utilizar tubo de cobre roscado, siempre que el espesor de pared del tubo utilizado sea equivalente al tubo de acero cédula 40 de tamaño comparable.
- **8.10.7** En tuberías enterradas deben tomarse las medidas necesarias para prevenir la corrosión por acción del par galvánico cuando el cobre es unido al acero u otro metal con menor potencial.
- **8.10.8** En su caso, las tuberías de cobre deben protegerse, contra la acción de agentes corrosivos agresivos (ácidos o alcalinos).

9. Tomas de servicio

- **9.1** Las tomas de servicio se deben conectar en la parte superior o a un costado de la tubería del ramal de suministro, pero nunca en la parte inferior.
- **9.2** Las tomas de servicio se deben instalar enterradas a 60 cm de profundidad como mínimo en propiedad privada y banquetas. Cuando esto no sea posible, la toma de servicio se debe proteger mediante una camisa resistente a las cargas externas previstas.
 - 9.3 No se permite la instalación de tomas de servicio que pasen por debajo de una construcción.
- **9.4** La salida de la toma de servicio debe quedar en un lugar determinado por el distribuidor de manera que los equipos de medición, regulación y corte sean accesibles para el distribuidor.
- **9.5** Cuando una toma de servicio no quede conectada a la instalación de aprovechamiento se debe colocar en su extremo una válvula con un tapón hermético que no dañe la tubería al colocarlo ni al quitarlo.
 - 9.6 Las tomas de servicio pueden ser de tubería de acero, cobre rígido o polietileno.
- **9.7** Las tomas de servicio de acero se deben proteger de la corrosión de acuerdo con el párrafo 8.8 de esta Norma.
 - 9.8 Las tomas de servicio de polietileno deben cumplir con lo siguiente:
 - Se deben conectar al ramal de suministro mediante una junta mecánica diseñada e instalada para soportar los esfuerzos causados por la contracción y expansión de la tubería y por cargas externas.
 - b) Se debe proteger del esfuerzo cortante causado por asentamiento del suelo.
 - c) Para conectarse a la estación de medición y regulación del usuario arriba de la superficie del suelo, se debe cambiar por tubería metálica o protegerla la tubería de polietileno contra daños mecánicos y rayos ultravioleta con una camisa desde su nivel enterrado hasta la conexión con la estación de medición y regulación.
- **9.9** Las tomas de servicio para edificios con múltiple de medición en azoteas deben cumplir con lo siguiente:
 - a) Se puede usar tubería de acero y/o de cobre adosada en forma visible a las paredes del edificio en posición vertical y horizontal. No se permite la instalación de tomas de servicio ocultas en las paredes ni que pasen por debajo ni por el interior de edificios.
 - b) Las tuberías verticales que salen del piso deben ser de acero o de cobre protegido contra daños mecánicos al menos 2 metros sobre el nivel del piso.
 - c) Deben tener una válvula de corte a la entrada del gas junto al edificio dentro de un registro enterrado o en la tubería vertical a una altura máxima de 1,8 metros del nivel de piso.
 - d) Las tuberías verticales se deben sujetar con abrazaderas con material aislante, espaciadas como máximo a 3 metros.

e) Las tuberías horizontales deben quedar soportadas para evitar flambeo o flexión. El máximo espaciamiento entre soportes debe ser de acuerdo al cuadro 6.

CUADRO 6 Espaciamiento entre soportes

Diámetro nominal mm (pulg)	Espaciamiento máximo m
12,7 (1/2)	1,2
15,9 (5/8) y 19 (3/4)	1,8
25 (1) y mayores	2,4

10. Inspección y pruebas

Miércoles 12 de marzo de 2003

- **10.1** Inspección. Se debe realizar una inspección visual durante el desarrollo de los trabajos en todos los frentes, como son: excavación, alineado y soldado, recubrimiento y bajado y relleno de zanja de acuerdo a los procedimientos y a la normatividad existente. Esta inspección la debe realizar el personal calificado del distribuidor. El personal calificado del distribuidor debe ordenar la corrección y reparación de las anomalías encontradas durante esta inspección.
- **10.2** Las pruebas no destructivas para comprobar la integridad de una soldadura se deben realizar por métodos radiográficos, que muestren los defectos que puedan afectar dicha integridad.
- **10.3** En casos especiales se podrán utilizar otros métodos no destructivos tales como: partículas magnéticas, ultrasonido y líquidos penetrantes.
- **10.4** Cuando se requieran pruebas no destructivas de las uniones soldadas durante el día, el supervisor de la obra seleccionará, aleatoriamente, un porcentaje de las soldaduras que se deben probar, de acuerdo a lo siguiente:
 - a) En clase de localización 1 por lo menos el 10%;
 - b) En clase de localización 2 por lo menos el 15%;
 - c) En clases de localización 3 por lo menos el 40%;
 - d) En clases de localización 4 el 75%;
 - e) En cruces con ferrocarriles, carreteras, cuerpos de aqua e instalaciones superficiales el 100%, y
 - f) Todo lo anterior aplica para tuberías de diámetro mayor a 50 mm.
- **10.5** Una soldadura se aprueba cuando ha sido inspeccionada visualmente o probada de manera no destructiva, por personal calificado, de acuerdo a la normatividad aplicable.
 - 10.6 Prueba de hermeticidad.
 - 10.6.1 Generalidades.
 - Toda tubería que conduzca gas debe ser objeto de una prueba de hermeticidad antes de ser puesta en servicio, dicha prueba debe ser realizada por personal capacitado;
 - b) Para efectuar las pruebas de hermeticidad se debe utilizar agua, aire o gas inerte. Sólo el distribuidor puede autorizar a realizar estas pruebas a la presión de operación con gas natural. Se prohíbe el uso de oxígeno como elemento de prueba;
 - c) La prueba de hermeticidad para la unión de conexiones a las ampliaciones del sistema con las tuberías existentes o por reparaciones a las mismas, se podrá probar a la presión de operación con la unión descubierta y mediante la aplicación de jabonadura en la misma, y
 - d) El extremo de la toma de servicio debe quedar obturado por medio de una brida ciega o tapón roscado para efectuar la prueba de hermeticidad.
- **10.6.2** Se debe de llevar un registro de las pruebas de hermeticidad realizadas, con el objeto de dejar constancia escrita de las mismas con ayuda de los registradores gráficos adecuados de presión y temperatura.
- **10.6.2.1** Los equipos utilizados para determinar la variación de la presión y temperatura deben tener un certificado de calibración vigente para la prueba.

- **10.6.2.2** Al término de la prueba no debe existir cambio en la presión, por lo que se considera que la instalación es hermética. La variación de presión admisible es la atribuible a una variación en temperatura al cerrar la gráfica, esta variación debe demostrarse mediante el cálculo matemático correspondiente. En caso contrario, el sistema se debe revisar hasta eliminar las fugas repitiendo la prueba hasta lograr la hermeticidad del mismo.
- **10.6.2.3** La gráfica debe ser firmada por el representante del Distribuidor, el representante de la constructora y la Unidad de Verificación, al reverso de la misma se debe indicar, el resultado, hora y la fecha en que se realizó la prueba, así como la identificación del tramo de línea y material o sistema de distribución probado.
- **10.6.2.4** Para tomas de servicio residenciales en cobre, acero o polietileno, la prueba de hermeticidad puede no ser avalada por la Unidad de Verificación.
 - 10.6.2.5 Las pruebas se harán en las condiciones que se describen en las tablas siguientes:

CUADRO 7

Pruebas de Hermeticidad Red de Acero

Presión de operación y diámetro	Pruebas a soldadura y/o conexiones	Fluido de prueba	Duración y presión de prueba	Instrumento
Para esta clasificación se debe cumplir con: - Menor o igual a 410 kPa, - Diámetro igual o menor a 100 mm - Longitud igual o menor a 100 metros, en tubería no enterrada	Radiografía: 100% y aplicación de jabonadura	10.6.1, inciso b)	1,5 veces la presión de operación por el tiempo que dure la verificación de las soldaduras con jabonadura	Manómetro
Igual o menor a 410 kPa	Radiografía: Según punto 10.4	10.6.1, inciso b)	24 hrs a 1,5 veces la Presión de operación	Manógrafo y Termógrafo
Mayor a 410 kPa	Radiografía: Según punto 10.4	Agua	24 hrs a 1,5 veces la Presión de operación	Manógrafo y Termógrafo

RED DE POLIETILENO

Presión de operación y diámetro	Pruebas a soldadura y/o conexiones	Fluido de prueba	Duración y presión de prueba	Instrumento
Para esta clasificación se debe cumplir con: - Menor o igual a 410 kPa - Diámetro igual o menor a 110 mm - Longitud igual o menor a 100 metros a tubería descubierta durante el tiempo de la prueba	Aplicación de jabonadura	10.6.1, inciso b)	1,5 veces la Presión de operación por el tiempo que dure la verificación de las soldaduras con jabonadura.	Manómetro de la red
Igual o menor a 410 kPa	Aplicación de jabonadura	Aire o gas inerte	24 hrs a 1,1 veces la presión de operación	Manógrafo y Termógrafo
Mayor a 410 kPa e Igual o menor a 689 kPa	Aplicación de jabonadura	10.6.1, inciso b)	Con agua, 24 hrs a 1,5 veces la presión de operación; Con aire o gas inerte, 24 hrs a 1,1 veces la presión de operación.	Manógrafo y Termógrafo

ACOMETIDA O TOMA DE SERVICIO

Presión de operación y diámetro	Pruebas a soldadura y/o conexiones	Fluido de prueba	Duración y presión de prueba	Instrumento
Acero a presión igual o menor a 410 kPa y Diámetro mayor a 50 mm (2 pulg)	Radiografía: según párrafo10.4	Aire o gas inerte	8 horas a 1,1 veces la presión de operación.	Manógrafo y Termógrafo
Longitudes mayores a 20 m.				
Igual que el anterior, pero con longitudes menores a 20 m.	Aplicación de jabonadura	Aire o gas inerte o gas natural, de acuerdo con 10.6.1	8 horas a la presión de operación	Manómetro
Acero a presión igual o menor a 410 kPa, Diámetro menor a 50 mm (2 pulg)	Radiografía: según párrafo 10.4	Aire o gas inerte	15 Minutos a 1,1 veces la presión de operación.	Manómetro
Acero a presión mayor de 410 kPa	Radiografía: según párrafo 10.4	10.6.1, inciso b)	8 hrs a 1,5 veces la presión de operación.	Manógrafo y Termógrafo
Polietileno a presión igual o menor de 410 kPa	Aplicación de jabonadura	Aire o gas inerte	15 Minutos a 1,1 veces la presión de operación.	Manómetro
Polietileno a presión mayor a 410 kPa e Igual o menor a 689 kPa	Aplicación de jabonadura	10.6.1, inciso b)	8 hrs a 1,5 veces la Presión de operación.	Manógrafo y Termógrafo
Cobre, igual o menor a 410 kPa	Aplicación de jabonadura	Aire o gas inerte	15 Minutos a 1,1 veces la presión de operación.	Manómetro

- 10.6.3 La prueba de hermeticidad de las tuberías de estaciones de regulación y de regulación y medición se harán sin instrumentos de control y medición y de acuerdo con el cuadro 7 anterior, según aplique, para detección de fallas en uniones o en soldaduras. Una vez que se conecten los instrumentos de control y medición, se deberá hacer una prueba de hermeticidad del conjunto a la presión de operación para la detección de fugas por medio de jabonadura a las uniones bridadas o roscadas y eliminación de las mismas, antes de que ésta entre en operación.
- **10.6.4** Los resultados de las pruebas de hermeticidad deben estar disponibles a la Unidad de Verificación y, a falta de ésta, a una empresa dictaminadora autorizada por la Comisión. El resultado de la prueba de hermeticidad del sistema o parte de éste debe estar a disposición de la Comisión Reguladora de Energía.
- **10.6.5** Cuando el sistema de distribución se desarrolle por etapas, se debe realizar una prueba de hermeticidad a la etapa correspondiente antes de que ésta entre en operación.
- **11. Puesta en servicio.** Antes de iniciar la operación del sistema de distribución, o de cualquier ampliación, extensión o modificación del sistema, se deberá:
 - Dictaminar el sistema de distribución, ampliación, extensión o modificación de la sección correspondiente por una Unidad de Verificación, considerando lo establecido en los capítulos 5 al 10 de esta Norma, e
 - 2. Integrar el dictamen, como parte de la verificación del párrafo 11.1.
- **11.1** Verificación anual. El permisionario debe presentar anualmente ante la Comisión un dictamen de una Unidad de Verificación que compruebe el cumplimiento de esta norma en lo relativo a la operación, mantenimiento y seguridad. Asimismo debe integrar los dictámenes de las ampliaciones, extensiones, o modificaciones del sistema de acuerdo con lo establecido en el capítulo 11.

12. Mantenimiento del sistema de distribución

- **12.1** Generalidades. El distribuidor debe contar con un manual de procedimientos de operación y mantenimiento del sistema de distribución en el que se describan, detalladamente, los procedimientos que se llevan a cabo en el sistema. El manual de operación y mantenimiento debe ser aprobado por la Comisión y actualizarse de acuerdo con la normatividad aplicable para reflejar los avances tecnológicos en la industria. El manual debe contener, como mínimo, lo siguiente:
 - a) Descripción de los procedimientos de operación y mantenimiento del sistema de distribución durante la operación normal, puesta en operación y paro. Dichos procedimientos deben incluir los relativos a las reparaciones del equipamiento de la red (estaciones, instrumentación, entre otros);
 - b) Identificación de las instalaciones de mayor riesgo para la seguridad pública;
 - Programa de inspecciones periódicas para asegurar que el sistema de distribución cumple con las especificaciones de diseño;
 - d) Programa de mantenimiento preventivo que incluya los procedimientos y los resultados de las pruebas e inspecciones realizadas al sistema de distribución (bitácora de operación y mantenimiento);
 - e) La periodicidad de las inspecciones;
 - f) Programa de suspensión de operación por trabajos de mantenimiento;
 - g) Capacitación al personal que ejecuta las actividades de operación y mantenimiento para reconocer condiciones potencialmente peligrosas que están sujetas a la presentación de informes a la Comisión, y
 - h) El distribuidor debe elaborar un programa de mantenimiento del sistema de protección catódica basado en una revisión sistemática de los potenciales eléctricos del sistema, en la localización de contactos que elimine las salidas o pérdidas de corriente del sistema y en la revisión de la resistencia eléctrica para determinar el estado que guardan los aislantes que delimitan los circuitos de protección catódica configurados.

12.2 Calidad del gas.

El gas que se inyecte en el sistema de distribución y que se entregue a los usuarios debe cumplir con la Norma Oficial Mexicana NOM-001-SECRE-1997, Calidad del gas natural, o la norma que la sustituya.

12.3 Odorización.

El distribuidor es responsable de la odorización del gas y el monitoreo, se deben realizar de acuerdo con el Apéndice I, Odorización del gas natural de esta Norma. Así como el monitoreo del nivel de odorización.

12.4 Sistema de telecomunicación.

La operación del sistema de distribución debe ser respaldada por un sistema de telecomunicación que permita establecer una comunicación continua durante las 24 horas del día, los 365 días del año, entre el centro de control y las cuadrillas encargadas de realizar las labores de operación, mantenimiento, atención a fugas, atención a clientes y supervisión del sistema de distribución.

12.5 Prevención de accidentes.

- **12.5.1** Si se determina mediante inspección que un tramo de tubería no se encuentra en condiciones satisfactorias, pero no existe peligro inmediato el distribuidor debe iniciar un programa para reacondicionamiento o reemplazo del tramo.
- **12.5.2** Durante la inspección o la instalación de tuberías donde pueda haber presencia de gas, se debe observar lo siguiente:
 - a) No se debe fumar, tener flamas abiertas, usar linternas que no sean a prueba de explosión o utilizar cualquier otro dispositivo que produzca chispa o represente una fuente de ignición;
 - **b)** Antes de proceder a cortar o soldar la tubería de gas, se deben suspender el suministro, purgar dichas tuberías y detectar que no hay presencia de gas con un detector de gas combustible;
 - c) La tubería de acero se debe conectar a tierra antes de hacer algún trabajo en la línea (si se tiene protección catódica por corriente impresa, desconectar el rectificador de corriente). La tubería de polietileno se debe descargar de electricidad estática;
 - d) La iluminación artificial se debe producir con lámparas y sus interruptores a prueba de explosión;
 - e) Se debe tener en el sitio de trabajo personal de seguridad y extintores de incendio;
 - f) Se deben evitar las concentraciones de gas en recintos confinados;
 - g) Establecer ventilación inmediata en lugares donde se haya acumulado el gas, y
 - h) Se debe utilizar equipo, herramienta y utilería de seguridad antichispa.

(Segunda Sección)

- 12.6 Suspensión de servicio.
- **12.6.1.** Notificación de interrupción del servicio. Cuando sea necesario suspender el servicio por razones de mantenimiento o reparaciones programadas en una línea o algún otro componente del sistema de distribución, el distribuidor se debe apegar a lo establecido en los artículos 76, 77 y 78 del Reglamento de Gas Natural y 84 fracción II del Reglamento de Gas Licuado de Petróleo.
- **12.7** En casos de fuerza mayor o emergencia, los usuarios afectados deben ser notificados por el distribuidor de las medidas tomadas para restablecer el servicio tan pronto como sea posible.
 - 12.8 Interrupción de trabajos de mantenimiento.

En caso de que un trabajo de mantenimiento en el sistema de distribución se requiera suspender, el sistema se debe dejar en condiciones seguras para su operación y aplicar las medidas establecidas en el manual de operación y mantenimiento.

12.9 Servicio de emergencia.

El distribuidor debe proporcionar un servicio de emergencia las 24 horas del día, durante los 365 días del año de manera ininterrumpida. Para ello, debe contar con vehículos equipados con detectores de fugas, explosímetros, herramientas, accesorios, y personal capacitado para atender cualquier emergencia en el sistema y controlar las fugas de manera eficiente.

- **12.9.1** Todo reporte de fuga debe ser atendido de acuerdo el Apéndice III, "Monitoreo, detección y clasificación de fugas de gas natural y gas LP en ductos" normativa vigente, hasta dejar el sistema en condiciones normales de operación. Después de haber reparado la fuga, el tramo de tubería correspondiente se debe probar a la presión de operación para verificar que la fuga fue eliminada.
- **12.9.2** El equipo utilizado para un servicio de emergencia y el personal asignado a dicho servicio deben ser adecuados para hacer frente a este tipo de situaciones.
 - 12.10 Programa de monitoreo de fugas. El distribuidor debe cumplir con lo establecido en el Apéndice III.
 - 12.11 Mantenimiento de reguladores.

El distribuidor debe elaborar y ejecutar un programa de inspección y reparación de reguladores para garantizar su operación segura e ininterrumpida. La capacidad, el tamaño del regulador y la presión de operación, son parámetros relevantes para determinar la frecuencia de las revisiones y el grado de mantenimiento requerido.

12.12 Mantenimiento de estaciones de regulación y de regulación y medición.

Las estaciones se deben someter a un programa anual de inspección y pruebas que cubra lo siguiente:

- a) Objetivos (de la instalación) del programa;
- b) Especificaciones técnicas y características;
- c) Pruebas mecánicas de operación;
- d) Pruebas específicas de instrumentación (reguladores, medidores, manómetros, termómetros, entre otros);
- e) Prueba de los dispositivos de seguridad, y
- f) Programa de operación y mantenimiento (de acuerdo a resultados).
- 12.13 Mantenimiento de registros y válvulas de seccionamiento.

Los registros que contengan válvulas de seccionamiento se deben inspeccionar periódicamente para verificar que éstos permanezcan libres de basura, agua o cualquier otra sustancia extraña al sistema. Las válvulas se deben lubricar y proteger con un recubrimiento anticorrosivo de acuerdo con el capítulo 3 del Apéndice II de esta Norma. Asimismo, se debe revisar el funcionamiento de las válvulas, los accesorios que tenga la instalación, y los aislantes de las bridas para verificar la continuidad eléctrica de la tubería.

12.14 Desactivación de tuberías.

El distribuidor debe elaborar un procedimiento para desactivar las tuberías que considere lo siguiente:

- a) Cada tubería desactivada se debe desconectar de la fuente de suministro de gas y purgarse;
- Si se utiliza aire para el purgado, el distribuidor se debe asegurar que no exista una mezcla combustible después del purgado;
- c) La tubería se debe obturar utilizando bridas ciegas o tapones;

- d) El distribuidor debe mantener un registro de las tuberías desactivadas:
- La tubería que vaya a ser reactivada se debe probar con el propósito de demostrar su integridad para el servicio que se requiera; en este caso, las tuberías de acero se deben haber mantenido protegidas contra la corrosión, y
- f) Cada registro de válvulas desactivado se debe llenar con un material compacto adecuado por ejemplo: Arena, tierra fina, entre otros.

12.15 Reclasificación de tuberías.

12.15.1 Esta sección establece los requisitos mínimos que se deben cumplir para la reclasificación de tuberías en operación que se van a someter a incrementos de presión. Para ello, es necesario determinar la máxima presión de operación permisible (MPOP) a las nuevas condiciones y las tuberías que sea necesario reclasificar.

12.15.2 Requisitos generales.

- **12.15.2.1** Incrementos de presión. Cuando se requiera modificar las condiciones de operación de una tubería por aumento de la presión, ésta se debe incrementar gradualmente, de tal manera que pueda ser controlada y de acuerdo con lo siguiente:
 - Después de cada incremento, la presión se mantendrá constante mientras el tramo completo de tubería se revisa para verificar que no existan fugas;
 - b) Cada fuga detectada se debe reparar antes de realizar un nuevo incremento de presión;
 - Cuando se someta un tramo de tubería a condiciones de operación más exigentes, se debe llevar un registro de las acciones tomadas en el sistema para acondicionarlo al nuevo rango de presión;
 - d) Cuando se modifiquen las condiciones de operación de un tramo de tubería, se debe registrar por escrito el procedimiento llevado a cabo para verificar el cumplimiento de esta Norma, y
 - e) A excepción de lo previsto en el párrafo 12.15 de esta Norma, al establecerse una nueva MPOP, ésta no debe exceder el valor máximo permitido para un tramo de tubería nuevo, construido con el mismo tipo de material, en la misma clase de localización, de acuerdo con el cuadro 2 de esta Norma.
- **12.15.2.2** Reclasificación. Ninguna tubería de acero se puede operar a una presión mayor a su MPOP si no se cumplen los requisitos siguientes:
 - Revisar el historial de diseño, operación y mantenimiento del tramo y las pruebas anteriores realizadas a la tubería en cuestión;
 - b) Realizar una investigación histórica de fugas (si no se ha realizado una investigación de fugas en más de 1 año) y reparar aquellas que se localicen en la tubería;
 - Realizar las reparaciones, reemplazos o adecuaciones que sean necesarias para que opere con seguridad cuando se incremente la presión;
 - d) En caso de que la tubería esté descubierta se deben reforzar las derivaciones, codos y terminaciones de las uniones de tubos que hayan sido acoplados por compresión, con el objeto de evitar fallas:
 - e) Aislar el tramo de tubería en el que se incrementará la presión;
 - f) Si la presión en la tubería es mayor que la presión entregada al usuario, se debe instalar un regulador debidamente probado para verificar la nueva presión de operación;
 - g) El aumento de la MPOP se debe hacer en incrementos graduales de 70 kPa o 25% del total de la presión que se aumentará, aquel que produzca el menor número de incrementos. Se deben hacer como mínimo, dos incrementos graduales para alcanzar la MPOP, y
 - h) Si se desconoce el espesor nominal de pared del tubo, el operador lo determinará midiendo el espesor de cada pieza en cuatro puntos a 90°. El promedio de todas las medidas tomadas nos indicará cuál es espesor nominal de la tubería.
 - **12.15.3** Reclasificación de la tubería por clase de localización.
- **12.15.3.1** Cuando la clasificación de la tubería se modifique como consecuencia de un cambio en la densidad de población o por desarrollo de la localidad, las tuberías se deben sujetar a los requisitos de la clase de localización correspondiente o realizarse una evaluación técnica para:
 - a) Comparar el diseño, procedimientos de construcción y de prueba durante la construcción con los requisitos establecidos en esta Norma para la clase de localización correspondiente;

- b) Determinar el estado en que se encuentra el sistema por medio de inspecciones de campo y de los registros de operación y mantenimiento, y
- c) Determinar tipo, proximidad y extensión del desarrollo urbano que ha ocasionado el cambio de clasificación en la clase de localización tomando en consideración los lugares de concentración de personas, tales como escuelas, hospitales y áreas de recreación construidas cerca de las tuberías existentes.
- **12.15.3.2** Cuando por medio de la evaluación técnica se determine que el espesor de pared de la tubería no es el adecuado por el cambio de clasificación de zona urbana, la tubería se debe reemplazar a la brevedad posible, o evaluarse técnicamente para determinar su MPOP. El nuevo espesor de pared de la tubería se debe calcular de acuerdo a lo establecido en el inciso 5.2.1.

13. Programa interno de protección civil

- **13.1** Generalidades. El distribuidor debe tener previsto el programa interno de protección civil en el cual se establezcan las acciones preventivas de auxilio y recuperación destinadas a salvaguardar la integridad física de la población y sus bienes, y proteger el sistema de distribución ante la ocurrencia de un siniestro. El programa interno de protección civil consta de:
 - a) Programa de prevención de accidentes;
 - b) Programa de auxilio, y
 - c) Recuperación.
 - 13.2 Programa de prevención de accidentes.
- **13.2.1** Este programa tiene como objeto establecer las medidas para evitar y/o mitigar el impacto destructivo de los siniestros sobre la población, sus bienes y el medio ambiente. Por lo anterior, es necesaria la creación de una unidad interna de protección civil y designar a un titular responsable del programa de prevención de accidentes. El distribuidor debe:
 - a) Llevar a cabo un análisis de riesgo en el que se identifiquen los riesgos a que está expuesto el sistema, así como las condiciones generales del mismo. Actualizar los planos para la localización precisa de las válvulas de seccionamiento, de las estaciones de regulación y de los demás componentes del sistema;
 - b) Tener directorios del personal integrante de la unidad interna de protección civil y de las organizaciones de respuesta a emergencias. Contar con inventarios de recursos humanos y de recursos materiales para uso interno en situaciones de emergencias. Debe implantar un procedimiento para informar al Centro de Comunicaciones de la Dirección General de Protección Civil, ante la eventualidad de un desastre:
 - c) Elaborar un programa de mantenimiento y pruebas que tenga como objetivo, determinar, estructurar y aplicar las normas y procedimientos internos de carácter preventivo y correctivo, para preservar la integridad física del sistema de distribución. El programa debe incluir:
 - i) El mantenimiento preventivo del sistema;
 - ii) La protección catódica de las tuberías metálicas;
 - iii) La detección de fugas mediante la revisión sistemática y documentada del sistema;
 - iv) El sistema de administración de la integridad del sistema de distribución, y la
 - v) Inspección rutinaria del mismo.
 - d) Establecer procedimientos de seguridad con lineamientos de salvaguarda, aplicables al sistema, que comprenda controles de acceso, restricción de entrada a áreas de riesgo, elaboración e instrumentación de procedimientos para el trabajo en líneas vacías y vivas, la supresión y reparación de fugas, así como la elaboración de lineamientos generales para la prevención de accidentes;
 - e) Contar con equipo de seguridad con base en una estimación del tipo de riesgo y vulnerabilidad del sistema. Se debe tener un inventario del equipo de seguridad con que se cuenta para enfrentar una contingencia;
 - f) Contar con un programa de capacitación específico, de carácter teórico-práctico, dirigido al personal, capacitándolo en la operación y seguridad del sistema;
 - g) Realizar acciones de difusión y concientización, a través de la elaboración de folletos y anuncios sobre seguridad en el uso del gas, cuyo objeto sea que el personal que labora en el sistema de distribución tenga una cultura de Protección Civil, y

- h) Realizar ejercicios y simulacros planeados con el personal con base en la identificación de riesgos a los que está expuesto. Dichas actividades deben consistir en ejercicios de gabinete o simulacros en campo, realizados por lo menos dos veces al año, con la participación de personal interno y de las dependencias involucradas, a fin de prevenir situaciones que se puedan presentar en caso de un siniestro.
- 13.3 Programa de auxilio.
- **13.3.1** Este programa tiene como objeto establecer las actividades destinadas a rescatar y salvaguardar a la población que se encuentre en peligro en caso de un siniestro y mantener en funcionamiento los servicios y equipo estratégico. El instrumento operativo de este programa es el Plan de Emergencia y comprende el desarrollo de lo siguiente:
 - Alerta. El distribuidor debe establecer un Sistema de Alerta interno utilizando sistema de comunicación, teléfonos o cualquier otro medio que determine;
 - b) Plan de Emergencia. El distribuidor debe elaborar un plan de actividades y procedimientos específicos de actuación para hacer frente a fallas en el sistema de distribución o en siniestros. El objetivo fundamental de este plan es la puesta en marcha y la coordinación del operativo de emergencia en función del siniestro, los recursos disponibles y los riesgos previsibles. El plan debe considerar:
 - i) Un responsable de la operación y un suplente;
 - ii) Establecimiento de un centro de comando identificado e intercomunicado para emergencias;
 - iii) Creación de un sistema de comunicación y alerta entre el distribuidor y los cuerpos de emergencia de la zona geográfica;
 - iv) Un protocolo de alerta a los cuerpos de seguridad pública;
 - v) Una relación de funciones y responsabilidades de los organismos involucrados;
 - vi) Determinación de zonas de emergencia y reglas de actuación en cada una de ellas;
 - vii) Los procedimientos para la supresión de fugas, uso y manejo de planos de localización de líneas, válvulas y accesorios, y
 - viii) Las reglas generales para el combate de incendios.
 - 13.3.2 En caso de siniestro, se deberá dar aviso a la Comisión en un plazo no mayor a 24 horas.
 - **13.4** Programa de recuperación.
- **13.4.1** Este programa tiene como objeto restablecer, en el menor tiempo posible, las actividades del sistema de distribución posteriores a la ocurrencia de un siniestro. El instrumento operativo de este programa debe incluir, como mínimo, lo siguiente:
 - a) Evaluación de daños. El distribuidor debe tener previstos los mecanismos y parámetros para determinar la dimensión de un siniestro, la estimación de daños humanos y materiales que dicho siniestro pueda causar y la posibilidad de que ocurran eventos secundarios o encadenados, con el objeto de solicitar oportunamente la colaboración de los cuerpos de emergencia adicionales y de apoyo técnico especializado;
 - b) Programa de reparación de las áreas afectadas. El distribuidor debe tener previstos los procedimientos para la restitución, modificación o reemplazo de las zonas afectadas, y
 - Restitución del servicio. Una vez reparadas las áreas afectadas, el distribuidor debe restituir el servicio a los usuarios.

14. Distribución de gas licuado de petróleo por medio de ductos

- **14.1** Se entiende por sistema de distribución de gas licuado de petróleo por medio de ductos, al conjunto de ductos, compresores, reguladores, medidores y otros equipos para recibir, conducir y entregar, en estado gaseoso, gas licuado de petróleo por medio de ductos dentro de una zona, desde el sistema de almacenamiento del mismo hasta el medidor de los usuarios, siendo éste el punto de conexión del sistema del distribuidor con las instalaciones para el aprovechamiento.
- **14.2** Esta Norma es aplicable en su totalidad al sistema de distribución de gas licuado de petróleo por medio de ductos.

(Segunda Sección)

15. Bibliografía

- 15.1 NOM-008-SCFI-1993, Sistema General de Unidades de Medida.
- 15.2 American Gas Association (AGA).
- 15.3 AGA Technical report No. 10, Steady Flow in gas pipelines fluid flow model.
- 15.4 American Petroleum Institute (API).
- 15.4.1 API 1104-1999, Welding of pipelines and related facilities.
- 15.4.2 API 5L-2000, Specification for line pipe.
- 15.4.3 API RP 5L1-1996, Recommended practice for railroad transportation of line pipe.
- **15.4.4** API RP 5LW-1996, Recommended practice for transportation of line pipe on barges and marine vessels.
 - 15.4.5 API 6D-1994, Specification for pipe lines valves.
 - 15.5 American Society of Mechanical Engineers (ASME).
- **15.5.1** ASME B 31.8-1999, Gas transmission and distribution piping systems y ASME B 31.4 P: Pipeline Transportation Systems for liquid Hydrocarbons and other liquids
- **15.5.2** ASME BPV-2001, Boiler and Pressure Vessel code, section I, section VIII division I, section VIII division 2. section IX.
 - **15.5.3** ASME B 16.1-1998, Cast iron pipe flanges and flanged fittings.
 - 15.5.4 ASME B 16.5-1996, Pipe flanges and flanged fittings.
 - 15.5.5 ASME B 16.9-2001, Factory made wrought steel butt welding fittings.
 - 15.5.6 ASME B 16.18-1984/Reaffirmed 1994, Cast copper alloy solder joint pressure fittings.
 - 15.5.7 ASME B 16.22-1995, Wrought copper and copper alloy solder joint pressure fittings.
 - 15.5.8 ASME B 16.25-1997, Buttwelding ends.
- **15.5.9** ASME B 16.33-1990, Manually operated metallic gas valves for use in gas piping systems up to 125 psig, size $\frac{1}{2}$ " 2".
 - 15.5.10 ASME B 16.34-1996, Valves flanged, threaded and welding end.
- **15.5.11** ASME B 16.38-1985/Reaffirmed 1994, Large metallic valves for gas distribution (manually operated NPS 2 ½" to 12", 125 psig max.).
- **15.5.12** ASME B 16.40-1985/Reaffirmed 1994, Manually operated thermoplastic gas shut-offs and valves in gas distribution systems.
 - 15.6 American Society for Testing and Materials (ASTM).
 - 15.6.1 ASTM B 32; Standard specification for solder metal
- **15.6.2** ASTM A 53-1996, Standard specification for pipe, steel, black and hot dipped, zinc coated welded and seamless.
- **15.6.3** ASTM A 106-1995, Standard specification for seamless carbon steel pipe for high temperature service.
- **15.6.4** ASTM A 333/A 333M-1994, Standard specification for seamless and welded steel pipe for low temperature service.
- **15.6.5** ASTM A 381-1993, Standard specification for metal arc welded steel pipe for use with high pressure transmission systems.
- **15.6.6** ASTM A 671-1994, Standard specification for electric fusion welded steel pipe for atmospheric and lower temperatures.
- **15.6.7** ASTM A 672-1994, Standard specification for electric fusion welded steel pipe for high pressure service at moderate temperatures.

- **15.6.8** ASTM A 691-1993, Standard specification for carbon and alloy steel pipe, electric fusion welded for high-pressure service at high temperatures.
- **15.6.9** ASTM B 813; Standard specification for liquid and paste fluxes for soldering of copper and copper alloy tube.
- **15.6.10** ASTM B 828; Standard practice for making capillary joints by soldering of copper and copper alloys tube and fittings.
- **15.6.11** ASTM B 837-1995, Standard specification for seamless copper tube for natural gas and Liquefied Petroleum (LP) gas distribution systems.
- **15.6.12** ASTM D 1988-1991 (Reapproved 1995), Standard test method for Mercaptans in natural gas using length of stain detector tubes.
- 15.6.13 ASTM D 2513-1999, Standard specification for thermoplastic gas pressure pipe, tubing and fittings.
 - **15.6.14** ASTM D 2657; Standard practice for heat fusion joining of polyolefin pipe and fittings.
- **15.6.15** ASTM D 3261-1997, Standard specification for butt heat fusion polyethylene (PE) plastic fittings for polyethylene (PE) plastic pipe and tubing.
- **15.6.16** ASTM D 2683-1995, Standard specification for socket type polyethylene fittings for outside diameter controlled polyethylene pipe and tubing.
 - 15.6.17 ASTM F 905-1996, Standard practice for qualification of polyethylene saddle fusion joints.
- **15.6.18** ASTM F 1055-1995, Standard specification for electrofusion type polyethylene fittings for outside diameter controlled polyethylene pipe and tubing.
- **15.7** Government of the United States of America, Code of Federal Regulations (CFR), Title 49 Department of Transportation (DOT), Chapter 1. Research and special programs administration Part 192.
 - **15.7.1** CFR 49 DOT 192-2000, Transportation of natural gas by pipeline: Minimum safety standards.
 - 15.8 Manufacturers standardization society of the valve and fittings industry (MSS).
 - 15.8.1 MSS SP-44-1996 (R 2001), Steel pipe flanges.
 - 15.8.2 MSS SP-75-1998, Specification for high test wrought welding fittings.
 - **15.9** National Association of Corrosion Engineers (NACE)
- **15.9.1** NACE RP 0169-1996, Standard Recommended Practice. Control of external corrosion on underground or submerged metallic piping systems.
- **15.9.2** NACE TM 0497-1997, Standard Test Method. Measurement techniques related to criteria for cathodic protection underground or submerged metallic piping systems.
 - 15.10 SEDIGAS, S.A.
 - 15.10.1 Recomendación SEDIGAS RS T 01 1991, Odorización de gases combustibles.
 - 16. Concordancia con normas internacionales

Esta Norma no tiene concordancia con ninguna norma internacional, por razones particulares del país.

17. Vigilancia

La Secretaría de Energía, por conducto de la Comisión Reguladora de Energía, es la autoridad competente para vigilar, verificar y hacer cumplir las disposiciones contenidas en esta Norma.

18. Vigencia

Esta Norma Oficial Mexicana entrará en vigor a los sesenta días naturales posteriores a la fecha de su publicación en el **Diario Oficial de la Federación**.

México, D.F., a 6 de febrero de 2003.- El Presidente de la Comisión Reguladora de Energía, **Dionisio Pérez Jácome**.- Rúbrica.- Los Comisionados: **Rubén Flores**, **Raúl Nocedal**, **Adrián Rojí** y **Raúl Monteforte**, este último también como Presidente del Comité Consultivo Nacional de Normalización de Gas Natural y Gas Licuado de Petróleo por Medio de Ductos.- Rúbricas.

APENDICE I ODORIZACION DEL GAS NATURAL INDICE

- 1. Introducción
- 2. Definiciones
- Odorizantes
- 4. Tipo y cantidad de odorizante a utilizar
- Sistemas de odorización
- Control del proceso de odorización
- 7. Medidas generales de seguridad para el manejo de los odorizantes

1. Introducción

La concentración de odorizante en el gas natural debe ser tal que el gas sea detectado por olfato cuando su concentración en la mezcla con aire sea de 1% en volumen, esto es la quinta parte del Límite Inferior de Explosividad (LIE).

2. Definiciones

Para efectos de aplicación de este Apéndice se establecen las definiciones siguientes:

- **2.1 Condiciones base:** Condiciones bajo las que se mide el gas natural, correspondientes a una presión absoluta de 98 kPa (1 kg/cm²), a una temperatura de 293 K (20°C).
- **2.3 Límite inferior de explosividad (LIE):** Valor inferior de la concentración de gas disperso en el aire, debajo del cual no se presenta una mezcla explosiva. En el gas natural el límite inferior de explosividad es el 5% (cinco por ciento) en volumen de gas en aire.
- **2.4 Límite superior de explosividad (LSE):** Valor superior de la concentración de gas natural disperso en el aire, arriba del cual no se presenta una mezcla explosiva. Para el gas natural el límite superior de explosividad es del 15% (quince por ciento) en volumen de gas en aire.
- **2.5 Mercaptanos:** Compuestos orgánicos sulfurados de olor característico desagradable, tóxico e irritante en altas concentraciones. También conocidos como Tioles.
 - 2.6 Odorización: Proceso mediante el cual se le aplica un odorizante a una sustancia inodora.
- **2.7 Odorizante:** Sustancia química compuesta por mercaptanos que se añade a gases esencialmente inodoros para advertir su presencia.
- **2.8 Presión de vapor:** Presión característica a una determinada temperatura del vapor de una sustancia en equilibrio con su fase líquida.

3. Odorizantes

El odorizante debe cumplir, como mínimo, con los requisitos siguientes:

- a) Contar con un grado de pureza que permita alcanzar el nivel de odorización mínimo establecido en el capítulo número 4 de este Apéndice;
- **b)** Ser compatible con los materiales de fabricación del equipo utilizado para la odorización del gas;
- c) Ser estable física y químicamente para asegurar su presencia como vapor dentro de la corriente de gas;
- d) No ser tóxico ni nocivo para las personas y equipos en la concentración requerida en el capítulo número 4 de este Apéndice;
 - e) Ser de fácil combustión dentro del rango recomendado por el fabricante;
- f) Contar con un grado de penetrabilidad que permita detectar las fugas de gas de una tubería enterrada por medio de la mancha que deja en el suelo y así prevenir a la población en el área circundante del peligro;
 - g) Tener una solubilidad en agua menor a 2,5% (dos coma cinco por ciento) en masa;
 - h) Contar con un olor que proporcione al gas natural el aroma característico y persistente;
 - i) Ser manejable para facilitar su adición al gas natural, y
- j) Los productos de la combustión del odorizante no deben ser corrosivos a los materiales expuestos ni ser nocivos para la salud de la población.

4. Tipo y cantidad de odorizante a utilizar

El gas natural debe ser odorizado a una concentración tal que permita ser detectado por el olfato cuando las concentraciones alcancen una quinta parte del límite inferior de explosividad, o cuando la proporción de gas natural en aire sea de 1% (uno por ciento).

5. Sistemas de odorización

- **5.1** El equipo de odorización seleccionado debe dosificar el odorizante dentro de los rangos de concentración recomendados por el fabricante.
 - **5.2** Los equipos de odorización deben cumplir con lo siguiente:
- a) La cantidad de odorizante dosificado debe ser proporcional al volumen de gas, independientemente de las condiciones de presión y temperatura, tanto del ambiente como del gas natural;
 - b) Los materiales deben ser resistentes a la corrosión química y atmosférica, y
 - c) El equipo debe tener la capacidad para manejar un amplio rango de flujos.
 - 5.3 La selección del equipo debe hacerse de acuerdo con el volumen de gas natural a odorizar.
 - **5.4** Se debe utilizar un contenedor de doble pared con la finalidad de prevenir derrames.

6. Control del proceso de odorización

- **6.1** El olor del gas natural debe monitorearse en puntos determinados de la red de distribución para verificar que la concentración del odorizante sea estable y se perciba cuando la proporción de gas natural en aire sea del 1% (uno por ciento) o una quinta parte del límite inferior de explosividad.
- **6.2** El control del proceso de odorización puede efectuarse en forma indirecta por el consumo de odorizante, o de forma directa mediante el análisis del contenido de odorizante en el gas natural. Si el gas natural a odorizar tiene contenidos variables de odorizante debe recurrirse al control directo.

En ambos métodos de control se deben tomar muestras del gas natural, en puntos diferentes de la red de distribución.

7. Medidas generales de seguridad para el manejo de los odorizantes

- 7.1 Medidas de seguridad.
- a) Para prevenir la combustión accidental de los vapores del odorizante se debe utilizar herramienta a prueba de chispa cuando se trabaje en equipos de odorización, y los trabajadores que laboren en el área no deben utilizar botas de seguridad con casquillo metálico expuesto, y
- **b)** El equipo de odorización y sus tuberías deben ser fabricados con materiales resistentes a los componentes de los odorizantes para evitar la corrosión, ejemplo: tuberías de acero al carbón sin costura para las líneas de transporte del odorizante. Los accesorios soldados y las conexiones bridadas se recomiendan para tuberías de diámetros mayores a 25,4 mm.
- **7.2** Derrames. Cuando se detecte un derrame de odorizante, éste debe neutralizarse mediante la aplicación de una sustancia química, por ejemplo, mediante la adición de una solución acuosa de hipoclorito de sodio. Asimismo, debe utilizarse un agente evanescente para enmascarar el olor y tierra, arena fina o aserrín para absorber dicho odorizante o el producto que recomiende el fabricante.

La eliminación del odorizante puede efectuarse por oxidación o por absorción, mediante compuestos como lejía, agua oxigenada y permanganato de potasio.

No deben verterse los oxidantes en altas concentraciones sobre el odorizante derramado ya que la reacción sería violenta y podría causar accidentes.

7.3 Almacenamiento. Los tambores del odorizante deben estar almacenados en lugares cubiertos, secos y bien ventilados.

No deben exponerse a los rayos solares.

Los tambores se deben enfriar antes de ser abiertos para no provocar una fuga de odorizante en fase vapor, ya que la presión de vapor aumenta rápidamente con el incremento de la temperatura (ver tabla siguiente):

Temperatura	Presión de vapor del odorizante
293 K	2,05 kPa
353 K	27,38 kPa

7.4 Seguridad del personal. El personal que ejecute operaciones de odorización debe usar prendas apropiadas que resistan el posible contacto con el odorizante, las cuales deben lavarse después de su utilización.

El equipo mínimo de seguridad adecuado para el personal que está en contacto con el odorizante debe ser el siguiente:

- a) Guantes, botas y delantal confeccionados con cloruro de polivinilo;
- b) Gafas protectoras de hule especial (recomendadas por el fabricante del producto), y
- c) Mascarilla con filtro de absorción para componentes orgánicos.

Ante cualquier contacto del odorizante con la piel debe lavarse de inmediato el área afectada con agua.

APENDICE II

CONTROL DE LA CORROSION EXTERNA EN TUBERIAS DE ACERO ENTERRADAS Y/O SUMERGIDAS

INDICE

- 1. Introducción
- 2. Definiciones
- Control de la corrosión externa en tuberías de acero
 - 3.1 Recubrimiento anticorrosivo
 - 3.2 Estructura a proteger
 - 3.2.1 Tuberías nuevas
 - 3.2.2 Tuberías existentes
 - 3.2.3 Puenteos eléctricos
 - 3.3 Tipos de protección catódica
 - 3.3.1 Anodos galvánicos o de sacrificio
 - 3.3.2 Corriente impresa
 - 3.4 Aislamiento eléctrico
 - 3.5 Criterios de protección catódica
 - 3.6 Perfil de potenciales de polarización
 - 3.7 Potencial tubo/suelo máximo permisible
 - 3.8 Mediciones de corriente eléctrica
 - 3.8.1 Medición de potenciales tubo/suelo
 - 3.8.2 Medición de resistividad
 - 3.8.3 Medición de corriente eléctrica
 - 3.9 Funcionalidad del sistema
 - 3.9.1 Previsiones para el monitoreo
 - 3.9.2 Interferencia con otros sistemas
 - 3.9.3 Cruzamientos
 - 3.9.4 Defectos en el recubrimiento anticorrosivo
 - 3.10 Operación, inspección y mantenimiento
 - 3.10.1 Fuentes de energía eléctrica
 - 3.10.2 Camas anódicas
 - 3.10.3 Conexiones eléctricas
 - 3.10.4 Aislamientos eléctricos
 - 3.10.5 Recubrimientos
 - 3.10.6 Levantamiento de potenciales

3.11 Seguridad

- 3.11.1 Medidas generales
- 3.11.2 Generación de gases peligrosos
- **3.11.3** Instalación en atmósferas peligrosas
- 3.11.4 Corto circuitos en instalaciones eléctricas
- 3.11.5 Señalización de instalaciones energizadas

3.12 Documentación

- 3.12.1 Historial del sistema de protección catódica
- 3.12.2 Interacción con estructuras y sistemas de otras dependencias

3.13 Registros

- 3.13.1 Funcionalidad del sistema de protección catódica
- 3.13.2 Modificaciones al sistema original
- 3.13.3 Reparación o reemplazo de algún componente del sistema de protección catódica
- 3.13.4 Estudios especiales

1. Introducción

Las estructuras metálicas o tuberías de acero enterradas y/o sumergidas están expuestas a los efectos de la corrosión externa como consecuencia del proceso electroquímico, que ocasiona el flujo de iones del metal de la tubería al electrolito que la rodea. Para reducir este efecto, es necesario ejercer un control de los factores que influyen en el proceso de corrosión, donde la adecuada selección del material de la tubería y la aplicación de los recubrimientos son los primeros medios utilizados para evitar dicho daño.

La función del recubrimiento es aislar la superficie metálica de la tubería del electrolito que la rodea. Además del recubrimiento anticorrosivo se debe aplicar protección complementaria a la tubería mediante el uso de protección catódica. La implementación, instalación, operación y mantenimiento adecuado del control de la corrosión externa en tuberías de acero enterradas o sumergidas han demostrado ser una herramienta eficaz que aumenta la confiabilidad de las tuberías destinadas al transporte de fluidos.

2. Definiciones

Para efectos de este Apéndice se establecen las definiciones siguientes:

- 2.1 Anodo: Elemento emisor de corriente eléctrica; es el electrodo de una celda en el cual ocurre el fenómeno de oxidación.
- **2.2 Anodo galvánico o de sacrificio:** Metal con potencial de oxidación más electronegativo que el de la tubería por proteger y que al emitir corriente eléctrica de protección, se consume.
- 2.3 Aterrizamiento: Conexión eléctrica, intencional o no, entre un conductor y tierra (suelos y cuerpos de agua).
- **2.4 Anodo inerte:** Electrodo auxiliar metálico o no metálico que forma parte del circuito de protección catódica y que se conecta a la terminal positiva de una fuente externa de corriente eléctrica directa.
- **2.5 Cama anódica:** Grupo de ánodos, ya sea inertes o galvánicos que forman parte del sistema de protección catódica.
- 2.6 Cátodo: Electrodo de una celda en el que ocurren las reacciones electroquímicas de reducción en un sistema de protección catódica.
 - 2.7 Celda solar: Equipo que transforma la energía solar en energía eléctrica de corriente directa.
- **2.8 Corriente de protección catódica:** Corriente eléctrica directa necesaria para obtener los valores del potencial de protección de una estructura metálica enterrada o sumergida en un electrolito.
- **2.9 Corriente parásita:** Corriente eléctrica directa o alterna que proviene de otra fuente de energía distinta al circuito previsto y que llega a la tubería a través del electrolito o por contacto directo. Cuando en una tubería metálica entra una corriente eléctrica parásita se produce corrosión en aquellas áreas donde dicha corriente eléctrica abandona la tubería metálica para retornar a su circuito de origen.
 - 2.10 Corrosión: Destrucción del metal por la acción electroquímica de ciertas sustancias.
- **2.11 Defecto en el recubrimiento:** Discontinuidad en el material anticorrosivo que expone la superficie del metal al medio electrolítico que lo rodea.
- **2.12 Densidad de corriente:** Corriente eléctrica directa por unidad de área, expresada usualmente en miliampere por metro cuadrado o miliampere por pie cuadrado.

- 2.13 Electrodo de referencia: Media celda electroquímica cuyo potencial es constante. Es un electrodo no polarizable.
- 2.14 Electrolito: Conductor iónico de corriente eléctrica directa. Se refiere al subsuelo o al agua en contacto con una tubería metálica enterrada o sumergida.
- 2.15 Estación de registro: Instalación para medir el potencial de la tubería ya sea natural o de polarización.
- 2.16 Junta de aislamiento: Accesorio constituido de un material aislante que se intercala en el sistema de tubería para separar eléctricamente a la tubería a proteger.
- 2.17 Interfaces: Transición a la que se somete la tubería al cambiar de electrolito, pudiendo ser ésta tierra-aire, tierra-concreto-aire, aire-agua, tierra-agua, etc.
- 2.18 Material de relleno: Mezcla de materiales sólidos que envuelven al ánodo para incrementar su conductividad eléctrica en el terreno donde se alojan.
- 2.19 Polarización: Magnitud de la variación de un circuito abierto en un electrodo causado por el paso de una corriente eléctrica.
- 2.20 Potencial crítico: Voltaje de protección catódica de valor inferior en relación al valor de cualquiera de los criterios de protección catódica.
- 2.21 Potencial natural: Potencial espontáneo (sin impresión de corriente eléctrica directa) que adquiere una estructura metálica al estar en contacto con un electrolito. También denominado potencial de corrosión.
- 2.22 Potencial tubo/suelo: Diferencia de potencial entre una tubería de acero enterrada y/o sumergida protegida catódicamente y un electrodo de referencia en contacto con el electrolito.
- 2.23 Protección catódica: Procedimiento eléctrico para proteger las estructuras metálicas enterradas o sumergidas contra la corrosión exterior, el cual consiste en establecer una diferencia de potencial para que convierta a las estructuras metálicas en cátodo, mediante el paso de corriente eléctrica directa proveniente del sistema de protección seleccionado.
- 2.24 Prueba de requerimiento de corriente: Aplicación de corriente eléctrica directa a la tubería por proteger catódicamente con el fin de cuantificar la corriente eléctrica de protección y determinar los alcances de protección para cada uno de los puntos de drenaje eléctrico.
- 2.25 Puenteo eléctrico: Conexión eléctrica entre tuberías mediante un conductor eléctrico y terminales fijas, con el fin de integrar en circuitos conocidos las tuberías adyacentes.
- 2.26 Punto de drenaje eléctrico: Sitio en el que se imprime la corriente eléctrica directa de protección a una tubería enterrada y/o sumergida.
- 2.27 Recubrimiento anticorrosivo: Material que se aplica y adhiere a la superficie externa de una tubería metálica para protegerla contra los efectos corrosivos producidos por el medio ambiente.
- 2.28 Rectificador: Equipo que convierte corriente eléctrica alterna en corriente eléctrica directa controlable.
- 2.29 Resistividad: Resistencia eléctrica por unidad de volumen del material. Las mediciones de esta propiedad indican la capacidad relativa de un medio para transportar corriente eléctrica.
- 2.30 Señalamiento: Avisos informativos, preventivos o restrictivos para indicar la presencia del ducto y/o referencia kilométrica del desarrollo del ducto. Es posible que los señalamientos estén dotados de conexiones eléctricas para funcionar como estaciones de registro de potencial.
- 2.31 Sistema de protección catódica: Conjunto de elementos como: ánodos galvánicos o inertes, rectificadores de corriente eléctrica, cables y conexiones que tienen por objeto proteger catódicamente una tubería de acero.
- 2.32 Tubería enterrada o sumergida: Es aquella tubería terrestre que está alojada bajo la superficie del terreno o en el lecho de un cuerpo de agua (pantano, río, laguna, lago, etc.). No se refiere a tuberías instaladas en el lecho marino.
- 2.33 Turbina generadora: Equipo de combustión interna que genera corriente eléctrica directa para proporcionar protección catódica a la tubería.
 - 3. Control de la corrosión externa en tuberías de acero

La prevención de la corrosión exterior en tuberías de acero enterradas y/o sumergidas se lleva a cabo mediante la aplicación de recubrimientos anticorrosivos y sistemas de protección catódica, con la finalidad de tener las tuberías de acero enterradas o sumergidas en buenas condiciones de operación y seguras.

- **3.1** Recubrimiento anticorrosivo. El tipo de recubrimiento anticorrosivo se debe seleccionar tomando en cuenta las condiciones de operación, la instalación, el manejo y el escenario particular de exposición de la tubería por proteger, así como la compatibilidad con la protección catódica complementaria.
- **3.1.1** Durante el manejo y almacenamiento de la tubería recubierta, ésta debe estar protegida para evitar daños físicos.
- **3.1.2** Se debe realizar una inspección dieléctrica de acuerdo a las características del recubrimiento anticorrosivo para determinar que no presente poros o imperfecciones. En caso de detectarse imperfecciones se deben eliminar las reparaciones y realizar nuevamente la inspección dieléctrica hasta su aceptación.
- **3.1.3** Cuando la tubería enterrada o sumergida quede expuesta a la superficie en la parte de transición, entre el tramo aéreo y el enterrado (interfase suelo-aire), se debe aplicar un recubrimiento anticorrosivo en la parte expuesta que prevenga la corrosión.
 - 3.2 Estructura a proteger.
- **3.2.1** Tuberías nuevas. Las tuberías nuevas enterradas y/o sumergidas deben ser recubiertas externamente y protegidas catódicamente, salvo que se demuestre mediante un estudio técnico realizado por el área técnica responsable del control de la corrosión externa, que los materiales son resistentes al ataque corrosivo del medio ambiente en el cual son instalados.
- **3.2.2** Tuberías existentes. Se deben establecer métodos de evaluación para determinar la necesidad de implementar programas adicionales de control de la corrosión y tomar las acciones correctivas de acuerdo con las condiciones prevalecientes.

Los métodos y acciones mencionados deben incluir, como mínimo, lo siguiente:

- a) Evaluación:
- **1.** Se deben revisar, analizar y evaluar los resultados de la inspección y mantenimiento normales de las tuberías de acero protegidas catódicamente en búsqueda de indicios de corrosión en proceso;
 - 2. Los métodos de medición eléctrica más comunes incluyen:

Potencial tubo/suelo;

Resistividad del suelo;

Potencial tubo/suelo por el método de dos electrodos.

- **3.** La funcionalidad de un sistema de protección catódica se debe monitorear de acuerdo con lo indicado en los incisos 3.7 y 3.8 de este Apéndice.
 - b) Medidas correctivas:
- **1.** Si se comprueba la existencia de áreas de corrosión en la tubería, se deben tomar medidas correctivas para inhibirla, como por ejemplo:

Previsiones convenientes para la operación adecuada y continua del sistema de protección catódica;

Mejoramiento del recubrimiento anticorrosivo;

Instalación complementaria de ánodos de sacrificio;

Utilización de fuentes de corriente impresa;

Delimitación con aislamientos eléctricos, y

Control de corrientes eléctricas parásitas.

3.2.3 Puenteos eléctricos. Cuando en el derecho de vía existen varias tuberías y se requiere protegerlas catódicamente, se deben puentear eléctricamente, siempre que las dependencias, órganos o empresas encargados de los sistemas de tuberías estén de acuerdo y previamente se hayan realizado los estudios correspondientes. La integración de tuberías ya sean nuevas o existentes a otros sistemas de tuberías debe quedar documentada conforme con lo indicado en el inciso 3.12 de este Apéndice.

La instalación del puenteo eléctrico se debe realizar de acuerdo a lo indicado en la definición del término puenteo eléctrico en el inciso 2.25 de este Apéndice. Se deben proteger las áreas afectadas por las conexiones a cada tubo con un recubrimiento anticorrosivo compatible.

Es recomendable que en los puenteos eléctricos que se ubiquen en las estaciones de registro de potencial se identifiquen los conductores eléctricos de cada una de las tuberías que se integran al sistema de protección catódica.

- **3.3** Tipos de protección catódica. Existen dos tipos de sistemas de protección catódica, los cuales se pueden emplear en forma individual o combinada:
 - a) Anodos galvánicos o de sacrificio, y
 - b) Corriente impresa.

3.3.1 Anodos galvánicos o de sacrificio. La fuente de corriente eléctrica de este sistema utiliza la diferencia de potencial de oxidación entre el material del ánodo y la tubería. La protección de las tuberías se produce a consecuencia de la corriente eléctrica que drena el ánodo durante su consumo.

En todos los casos, se debe asegurar que la diferencia de potencial disponible del sistema seleccionado sea suficiente para que drene la corriente eléctrica de protección, de acuerdo con lo indicado en el inciso 3.5.

- **3.3.2** Corriente impresa. Este sistema consiste en inducir corriente eléctrica directa a una tubería enterrada mediante el empleo de una fuente y una cama de ánodos inertes que pueden ser de hierro, grafito, ferrosilicio, plomo y plata entre otros. La fuente de corriente eléctrica directa se conecta en su polo positivo a una cama de ánodos inertes y el polo negativo a la tubería a proteger.
- **3.4** Aislamiento eléctrico. La tubería de acero a proteger debe quedar eléctricamente aislada de cualquier otro tipo de estructura metálica o de concreto que no esté considerada en la implementación del sistema de protección catódica, tales como soportes de tubería, estructuras de puentes, túneles, pilotes, camisas de acero protectoras, recubrimiento de lastre, entre otros.
- **3.4.1** Las juntas aislantes se deben seleccionar considerando factores como su resistencia dieléctrica y mecánica, así como las condiciones de operación de la tubería. Al realizar cualquier instalación de junta aislante se debe comprobar la ausencia de atmósfera combustible.

Las juntas aislantes se deben instalar en los lugares siguientes:

- a) En cabezales de pozos;
- b) En el origen de ramales;
- c) En la entrada y salida de la tubería en estaciones de medición y/o regulación de presión, de compresión y/o bombeo;
 - d) En las uniones de metales diferentes para protección contra la corrosión galvánica;
- e) En el origen y final del sistema de tuberías que se deseen proteger para prevenir la continuidad eléctrica con otro sistema metálico, y
 - f) En la unión de una tubería recubierta con otra tubería descubierta.
- **3.5** Criterios de protección catódica. Para proteger catódicamente a las tuberías enterradas y/o sumergidas se debe cumplir, como mínimo, con uno de los criterios siguientes:

Para ello se recomienda las técnicas de medición indicadas en el código NACE-TM-0497-1997.

- a) Un potencial tubo/suelo (catódico) mínimo de -850 milivolts, medido respecto de un electrodo de referencia de cobre/sulfato de cobre saturado (Cu/CuSO₄), en contacto con el electrolito. La determinación de este voltaje se debe hacer con la corriente eléctrica de protección aplicada:
- **b)** Un potencial de protección tubo/suelo (catódico) de -950 milivolts, cuando el área circundante de la tubería se encuentre en condiciones anaerobias y estén presentes bacterias sulfato-reductoras;

Para una interpretación válida se debe efectuar la corrección a que haya lugar debido a la caída de voltaje originada durante la medición:

c) Un cambio de potencial de polarización mínimo de -100 milivolts, medido entre la superficie de la tubería y un electrodo de referencia de cobre/sulfato de cobre saturado (Cu/CuSO₄) en contacto con el electrolito.

Este cambio de potencial de polarización se debe determinar interrumpiendo la corriente eléctrica de protección y midiendo el abatimiento de la polarización. Al interrumpir la corriente eléctrica ocurre un cambio inmediato de potencial. La lectura del potencial después del cambio inmediato se debe usar como base de la lectura a partir de la cual se mide el abatimiento de la polarización.

Los periodos de suspensión de corriente eléctrica de protección durante los cuales se puede realizar dicha medición están en el rango de 0,1 a 3,0 segundos.

3.6 Perfil de potenciales de polarización. Una vez instalado el sistema de protección catódica se debe verificar el nivel de protección a lo largo de la trayectoria de la tubería. Los valores de potencial obtenidos deben cumplir, como mínimo, con alguno de los criterios indicados en el inciso 3.5 de este Apéndice. Con la información anterior se debe elaborar el perfil inicial de potenciales de polarización y mediante su análisis e interpretación se deben realizar los ajustes operacionales a que haya lugar en el sistema seleccionado.

Se deben establecer pruebas de rutina para verificar el comportamiento del sistema de protección catódica, tales como medición y registro de la demanda de corriente eléctrica de protección, resistencia del circuito, condiciones operativas de la fuente de corriente eléctrica directa y perfiles de potenciales de polarización. Lo anterior, con la finalidad de identificar fácilmente los valores de subprotección o sobreprotección en el ducto, así como contar con elementos de juicio técnicos para llevar a cabo pruebas y/o estudios adicionales.

El análisis e interpretación de los resultados de las pruebas antes mencionadas se deben efectuar de manera integral para efectos comparativos, con el objeto de determinar la tendencia de los parámetros monitoreados. Esta información se debe integrar en un expediente sobre la funcionalidad del sistema.

3.7 Potencial tubo/suelo máximo permisible. Este valor se fijará de acuerdo a las características particulares del recubrimiento anticorrosivo existente en la tubería. No debe exceder al potencial de desprendimiento catódico o a valores de potencial más negativos que originen problemas colaterales. Como recomendación general, el valor máximo de potencial no deberá exceder de -2,5 volts en condición de encendido con respecto de un electrodo de referencia o, -1,1 volts en la condición de apagado instantáneo; ambos potenciales referidos a un electrodo de referencia de cobre/sulfato de cobre saturado (Cu/CuSO₄), con el electrolito circundante de la tubería a proteger o protegida catódicamente.

Lo anterior, para reducir los efectos adversos tanto en el recubrimiento dieléctrico como en el ducto debido a una sobreprotección originada por el sistema de protección catódica.

- **3.8** Mediciones de corriente eléctrica. Durante las etapas de implementación, pruebas de campo, construcción, puesta en operación y seguimiento de la efectividad de los sistemas de protección catódica de tuberías enterradas y/o sumergidas, se deben realizar estudios que involucren la medición de variables eléctricas tales como: potencial tubo/suelo (natural y de polarización), resistividad, resistencia y corriente. En esta sección del Apéndice se describen los aspectos generales relacionados con la medición de estos parámetros.
- **3.8.1** Medición de potenciales tubo/suelo. Para la protección catódica de tuberías metálicas enterradas y/o sumergidas en un electrolito, es necesario conocer la diferencia de potencial adquirida en la interfase tubo/suelo, tanto en ausencia de corriente eléctrica de protección (potenciales naturales o de corrosión), como en la impresión de corriente eléctrica (potenciales de polarización). Para efectuar la medición de esta diferencia de potencial se requiere utilizar una celda o electrodo de referencia. En el caso de tuberías de acero enterradas o sumergidas enterradas, se debe utilizar la celda de cobre/sulfato de cobre saturado (Cu/CuSO₄).

En los casos donde se utilicen electrodos de referencia diferentes al de cobre/sulfato de cobre saturado (Cu/CuSO₄) se debe tomar en cuenta el potencial equivalente.

Entre los electrodos de referencia más usados encontramos los potenciales equivalentes siguientes:

- a) KCI saturado (calomel) con un valor mínimo de potencial equivalente de: -0,78 volts.
- b) Plata/cloruro de plata con un valor mínimo de potencial equivalente de: -0,80 volts.

Se debe verificar cuando menos una vez al año el adecuado funcionamiento de los electrodos de referencia.

Los voltímetros utilizados en la medición de la diferencia de potencial tubo/suelo deben tener una alta impedancia de entrada. Se recomiendan impedancias de entrada no menores a 10 Mega Ohms.

Cuando se requiera conocer de manera continua la diferencia de potencial tubo/suelo, se debe utilizar un registrador de potencial mecánico o electrónico con rango y resistencia de entrada adecuados.

3.8.2 Medición de resistividad. Se deben realizar mediciones de la resistividad del suelo, para ser usadas como apoyo en la implementación del sistema de protección catódica.

La tabla 1 proporciona datos indicativos de los efectos de corrosividad del suelo referidos a la resistividad del mismo.

TABLA 1
Relación entre la resistividad y corrosividad del terreno

Resistividad del suelo (ohms/cm)	Corrosividad del suelo
0-1.000	Altamente corrosivo
1.000-5.000	Corrosivo
5.000-10.000	Poco corrosivo
10.000-en adelante	Muy poco corrosivo

- **3.8.3** Medición de corriente eléctrica. Durante las diferentes etapas en la implementación de un sistema de protección catódica para un sistema de tubería se deben efectuar, con la periodicidad indicada en los programas de operación y mantenimiento de la empresa, las mediciones siguientes:
 - a) Corriente eléctrica alterna de alimentación al rectificador;
 - b) Corriente eléctrica directa en la tubería protegida;
 - c) Corriente eléctrica directa de salida del rectificador, y
 - d) Corriente eléctrica directa que drena cada ánodo y la que drena la cama anódica.

Para realizar las mediciones de corriente eléctrica directa se deben utilizar los instrumentos de medición calibrados. La medición de corriente eléctrica en sistemas de ánodos galvánicos se debe realizar utilizando un amperímetro de alta ganancia.

3.9 Funcionalidad del sistema. Para que un sistema de protección catódica sea efectivo debe proporcionar una corriente eléctrica suficiente y una distribución uniforme al sistema de tubería a proteger, evitando interferencias, corto circuitos en encamisados metálicos y daños en los aislamientos eléctricos así como en el recubrimiento anticorrosivo.

Todos los sistemas de tubería de acero deben contar con un sistema de protección catódica permanente en un plazo no mayor a un año posterior a la terminación de su construcción. En suelos altamente corrosivos (0 a 2000 ohms/cm, presencia de agentes promotores de la corrosión, etc.), se debe instalar un sistema de protección catódica provisional con ánodos galvánicos en forma simultánea a la construcción del sistema de tubería. Este sistema provisional de protección catódica se debe sustituir, antes de un año después de terminada la construcción, por el sistema de protección catódica definitivo.

3.9.1 Previsiones para el monitoreo. Para determinar la eficacia del sistema de protección catódica, la tubería debe contar con estaciones de registro eléctrico para la medición de potenciales tubo/suelo. Cuando la tubería esté instalada a campo traviesa, dichas estaciones deben instalarse cada kilómetro sobre el derecho de vía de la tubería y en todos los cruzamientos con estructuras metálicas enterradas, carreteras, vías de ferrocarril y ríos, en caso de ser posible.

Cuando la tubería esté instalada en zonas urbanas, las estaciones de registro eléctrico se pueden instalar en banquetas, registros de válvulas o acometidas, en caso de ser posible.

Cuando las estaciones de registro eléctrico de protección catódica no se puedan colocar de acuerdo a lo establecido en el párrafo anterior debido a impedimentos físicos o geográficos, la estación de registro correspondiente se debe instalar en el sitio accesible más cercano. La ubicación real de estos sitios se debe documentar y guardar en archivo para futuras referencias.

Las estaciones deben contar con puntas de prueba, a efecto que faciliten la medición de la corriente eléctrica del sistema de protección catódica en cada uno de los puntos donde se aplique el sistema de protección seleccionado, previendo las conexiones para la medición de la corriente eléctrica drenada por cada ánodo y la total de la cama anódica. Las mediciones se realizarán como mínimo una vez al año.

- **3.9.2** Interferencias con otros sistemas. Cuando se vaya a instalar un sistema de protección catódica de una tubería nueva se debe notificar a todas las compañías que tengan estructuras metálicas enterradas y/o sumergidas cerca del área en donde se vaya a alojar la tubería por proteger, con la finalidad de predecir cualquier problema de interferencia. La notificación debe contener, como mínimo, la información siguiente:
 - a) La trayectoria que sigue el tendido de la tubería;
- **b)** La indicación de rutas de las tuberías a proteger y de cualquier estructura que se vaya a unir a la tubería para reducir alguna interferencia;
 - c) El empleo de ánodos galvánicos o corriente impresa;
 - d) La posición de la cama o ánodos;
 - e) Las corrientes eléctricas esperadas, y
 - f) La fecha de puesta en operación del sistema.
- El personal encargado de la protección catódica debe estar en disponibilidad de detectar indicios de interferencia con una fuente generadora de corriente eléctrica vecina. En áreas donde se sospeche la presencia de corrientes eléctricas parásitas se deben efectuar los estudios correspondientes, dentro de los que se encuentran:
 - a) La medición de potencial tubo/suelo;
 - b) La medición del flujo de corriente eléctrica en la tubería interferida, y
- c) La medición de las variaciones en la corriente eléctrica de salida de la corriente eléctrica de interferencia.

Los indicios más comunes de interferencia con una fuente vecina son:

- a) Cambios de potencial tubo/suelo;
- b) Cambios de magnitud o dirección de la corriente eléctrica;
- c) Defectos en el recubrimiento, y
- d) Daños locales por corrosión en el ducto.

Para mitigar los efectos mutuos entre las líneas de transmisión eléctrica y las tuberías de acero enterradas, la separación entre la pata de la torre o sistema de tierras de la estructura de la línea de transmisión eléctrica y el ducto debe ser mayor de 15 metros para líneas de transmisión eléctrica de 400 kilovolts, y mayor de 10 metros para líneas de transmisión eléctrica de 230 kilovolts y menores.

Cuando no sea posible lograr las distancias mínimas recomendadas, se debe realizar un estudio del caso particular para reforzar el recubrimiento de la tubería donde sea necesario y, por ningún motivo, la distancia debe ser menor a 3 metros respecto de la pata de la línea de transmisión eléctrica.

Se deben realizar estudios para evaluar los efectos que pudieran causar las descargas eléctricas de alto voltaje, corrientes eléctricas inducidas, cruces y paralelismo con torres de transmisión eléctrica y otras estructuras. Se deben realizar estudios y las correcciones necesarias para resolver los problemas de interferencia eléctrica.

3.9.3 Cruzamientos. Se debe conocer el funcionamiento del sistema de protección catódica en los puntos de cruzamiento como son: calles, carreteras, vías de ferrocarril y ríos, debido a que en estos lugares, si tienen camisa metálica, se pueden propiciar aterrizamientos que provocarían una reducción en la efectividad del sistema de protección catódica.

Cuando existan cruzamientos y/o paralelismos con otras tuberías se debe verificar la interacción entre ambos sistemas mediante mediciones de potencial tubo/suelo y establecer las medidas correctivas para minimizar los efectos de la interacción.

3.9.4 Defectos en el recubrimiento anticorrosivo. Debido a que el recubrimiento anticorrosivo de la tubería está expuesto a daños y deterioros por factores tales como: absorción de humedad, esfuerzos del terreno y desprendimiento catódico, se deben realizar investigaciones tendentes a identificar, cuantificar y valorar los defectos del recubrimiento dieléctrico y sus efectos en la demanda de corriente eléctrica del sistema de protección catódica seleccionado, estableciendo la conveniencia de repararlos y/o administrar la protección catódica en esas áreas desnudas de la tubería.

Cualquier tramo de la tubería que quede desnudo o expuesto al medio ambiente, debe ser examinado en búsqueda de evidencias de corrosión externa, y dependiendo del estado del recubrimiento dieléctrico, se tomen las acciones correctivas mencionadas en el inciso 3.2.2 b) que garanticen la integridad de la tubería.

Cuando se detecten daños en el recubrimiento anticorrosivo que sean de una magnitud que justifique su reposición, se deben aplicar recubrimientos anticorrosivos compatibles con el existente.

- **3.10** Operación, inspección y mantenimiento. Con el propósito de mantener la integridad de los sistemas de tuberías enterrados y/o sumergidos, la entidad encargada del sistema de protección catódica debe establecer, instrumentar y cumplir con los programas de inspección y mantenimiento periódico de los elementos que conforman los sistemas de protección catódica.
- **3.10.1** Fuentes de energía eléctrica. Cuando el sistema de protección es a base de corriente impresa con rectificador, las fuentes de energía eléctrica se deben inspeccionar cuando menos seis veces cada año calendario a intervalos que no excedan de dos meses y medio. Para tal efecto, se deben llevar registros de las condiciones de operación, así como cualquier ajuste operacional en el voltaje y/o corriente eléctrica de salida. En caso de que una fuente de corriente eléctrica falle, se deben realizar las medidas correctivas necesarias en conformidad con los códigos, reglamentos, normas y leyes aplicables.

La frecuencia de revisión de sistemas de protección catódica automáticos, fotovoltaicos, turbo generadores y supervisados a control remoto, se deberá realizar cuando menos una vez al año.

En caso de ocurrir cambios positivos de potencial se debe tomar acción inmediata, particularmente en los puntos de impresión de corriente eléctrica, ya que esto pudiera indicar una polaridad invertida en la fuente externa de corriente eléctrica directa.

- **3.10.2** Camas anódicas. Los dispositivos anódicos, por lo general, son instalados en forma permanente y no requieren de mantenimiento. Estos dispositivos deben ser revisados y reemplazados cuando se presente una falla o concluya la vida útil. Se debe verificar la corriente eléctrica de salida de los ánodos y la corriente eléctrica total de la cama anódica, a fin de determinar si la cama anódica está funcionando correctamente. Cuando se requiera, los ánodos de la cama anódica se deben humectar con la adición de agua limpia.
- **3.10.3** Conexiones eléctricas. Todas las conexiones eléctricas e interruptores de corriente eléctrica se deben revisar como mínimo una vez al año y, en caso de existir alguna anomalía, se debe eliminar o corregir.
- **3.10.4** Aislamientos eléctricos. Los dispositivos de aislamiento eléctrico se deben verificar cuando menos una vez al año y reemplazar en caso de falla.

- **3.10.5** Recubrimientos. Se deben realizar inspecciones cuando menos cada seis meses del recubrimiento dieléctrico en todos los tramos de las tuberías que se encuentren en la superficie y en áreas expuestas. Cuando el recubrimiento se encuentre deteriorado se debe reemplazar o reparar.
- **3.10.6** Levantamiento de potenciales. Se deben efectuar mediciones de potenciales tubo/suelo a lo largo de la trayectoria de la tubería, a intervalos máximos de seis meses para zonas a campo traviesa y cada tres meses en zonas urbanas. Esta periodicidad puede ser modificada para condiciones particulares del sistema de protección catódica o para zonas críticas en las que una falla del sistema resulte en una condición de riesgo para la seguridad de la población, así como para áreas en donde se hayan identificado y probado la existencia de potenciales de subprotección y que se requiera evaluar la efectividad de las medidas correctivas mencionadas en el inciso 3.2.2 b) aplicadas o en caso que se presente algún fenómeno de interacción eléctrica con sistemas ajenos al seleccionado.
- **3.11** Seguridad. Esta sección indica aspectos mínimos de seguridad que se deben considerar en los sistemas de protección catódica de tuberías enterradas y/o sumergidas.

Los sistemas de protección catódica durante sus distintas etapas involucran el uso de equipo energizado, dispositivos de aislamiento eléctrico, puenteos eléctricos y mediciones de parámetros eléctricos los cuales pueden provocar daños al personal operativo por descargas eléctricas. Por ello estos trabajos se deben ejecutar por personal calificado y con experiencia en materia de obras e instalaciones eléctricas y de acuerdo a lo que establecen los reglamentos, códigos, normas y leyes aplicables.

El personal que realice actividades de protección catódica debe utilizar la ropa y equipo de protección personal apropiados para el manejo de equipo energizado.

El encargado del sistema de protección catódica deberá dar por escrito las instrucciones de trabajo al personal que realice los trabajos referentes a la protección catódica en donde se indiquen las labores encomendadas, los implementos y equipos de seguridad aplicables así como el equipo y herramientas idóneas para el desempeño de las funciones.

Cuando se requiera realizar una revisión o reparación en el sistema de protección catódica que involucre un riesgo, el encargado de la protección catódica debe expedir la autorización para la realización del trabajo respectivo.

- **3.11.1** Medidas generales. Las medidas de seguridad aplicables al equipo, instalación y mantenimiento de los sistemas de protección catódica, deben considerar que se tiene la posibilidad de descargas eléctricas, cortocircuito, producción de chispas debidas a arcos eléctricos que puedan originar riesgos de incendio, toxicidad debida a la generación de cloro en camas anódicas, voltajes y corrientes eléctricas inducidas por líneas de transmisión eléctrica o sistemas de tierra localizados en las proximidades de los ductos protegidos catódicamente, así como a condiciones meteorológicas, por lo que se deberán tomar las medidas de seguridad siguientes:
- a) Cuando se instalen dispositivos de aislamiento eléctrico en áreas donde se anticipe una atmósfera combustible, se debe evitar la formación de arco eléctrico conectando a tierra las instalaciones;
- b) Los rectificadores utilizados en los sistemas de protección catódica deben ser de doble devanado y conectados a tierra;
- c) Las terminales energizadas deben estar aisladas para prevenir un contacto accidental por parte del personal operativo, y
- d) Para reducir el riesgo de daño a las personas por el gradiente de voltaje en la superficie del suelo circundante de las camas anódicas, se deben tomar las precauciones siguientes:
- **1.** Enterrar, a 90 centímetros como mínimo, los ánodos y el material de relleno que constituyen la cama anódica, y
 - 2. Aislar totalmente y proteger de daños mecánicos los cables eléctricos de interconexión.

Cuando exista la posibilidad de que se desarrollen voltajes inducidos que pudieran causar un arco eléctrico en las juntas de aislamiento, se deben utilizar celdas electrolíticas de puesta a tierra, celdas de polarización u otros dispositivos adecuados para canalizar la energía a tierra.

- **3.11.2** Generación de gases peligrosos. En sistemas de protección catódica en los que se instalen ánodos en pozo profundo se deben incluir venteos para evitar la acumulación de gases de hidrógeno y cloro producto del desprendimiento, debido a que pueden ser una condición de riesgo de explosión o intoxicación.
- **3.11.3** Instalación en atmósferas peligrosas. La naturaleza eléctrica de los sistemas de protección catódica representa el riesgo de una fuente de ignición en atmósferas peligrosas (combustibles y/o explosivas), por lo que su instalación en esas áreas debe satisfacer la clasificación eléctrica de áreas conforme a la NOM-001-SEMP-1994.

- **3.11.4** Corto circuitos en instalaciones eléctricas. El cortocircuito de juntas aislantes constituye un riesgo potencial, por lo que, en caso de ser posible, dichas juntas se deben instalar fuera de áreas peligrosas. Cuando no sea posible, se deben adoptar medidas para evitar chispas o arcos eléctricos, como:
 - a) Conexiones de resistencia colocadas en gabinetes a prueba de fuego;
 - b) Arrestador de flama encapsulado;
 - c) Electrodos de zinc conectados a tierra en cada lado de la junta aislante, o
 - d) Una celda de polarización conectada a través de la junta aislante o a tierra.

Las superficies de la junta aislante deben estar encapsuladas para prevenir corto circuitos causados por herramientas.

- **3.11.4.1** Desconexión, separación o ruptura de la tubería protegida. La tubería protegida catódicamente tiene una corriente eléctrica fluyendo a través de ella, cualquier desconexión, separación o ruptura de la tubería interrumpe el flujo de corriente eléctrica, lo que puede provocar la generación de un arco eléctrico dependiendo de la magnitud de la corriente eléctrica.
- El transformador-rectificador que protege una sección de la tubería en la que se realizará una modificación, mantenimiento o reparación debe ser apagado y se debe instalar una conexión temporal. Es esencial que la conexión esté puenteada a cada uno de los lados de la separación y que permanezca conectada hasta que se termine el trabajo y la continuidad eléctrica sea restaurada o hasta que el área quede libre de gas y sin riesgo.
- **3.11.4.2** Equipo eléctrico. El equipo eléctrico instalado en un área de proceso debe ser a prueba de fuego y estar certificado para su uso en el área, con base en la NOM-001-SEMP-1994. En el área de proceso se deben utilizar interruptores de doble polo para asegurar que ambos polos estén aislados durante el mantenimiento. Cada cable que transporte corriente eléctrica de protección catódica se debe instalar de manera que no se pueda realizar la desconexión dentro del área de riesgo sin suspender la energía al sistema de protección catódica. Los cables deben estar protegidos mecánicamente para prevenir su ruptura.
- **3.11.4.3** Instrumentos de prueba. Cuando se efectúen mediciones eléctricas para el control de la protección catódica en atmósferas peligrosas, el equipo utilizado debe ser intrínsecamente seguro, y antes de realizar los trabajos el área debe ser evaluada y declarada libre de una atmósfera peligrosa.
- **3.11.5** Señalización de instalaciones energizadas. En los lugares donde se instalen fuentes de corriente eléctrica para la protección catódica se deben colocar señalamientos de advertencia visibles de acuerdo a la NOM-001-SEMP-1994.
 - 3.12 Documentación.
- **3.12.1** Historial del sistema de protección catódica. La entidad, órgano o empresa responsable del sistema de protección catódica debe contar con la documentación que respalde todas las acciones realizadas desde la implementación, operación y mantenimiento del sistema. Esta documentación debe estar bajo resguardo y disponible para la autoridad competente que la requiera. La información debe contener como mínimo lo siguiente:
 - a) Implementación:

Objetivo del sistema de protección catódica;

Especificaciones del recubrimiento dieléctrico así como de su instalación;

Ubicación y especificaciones de dispositivos de aislamiento eléctrico;

Pruebas previas a la implementación:

- 1) Localización de la tubería (plano, referencias geográficas, accesos, etc.);
- 2) Estudios de resistividades del suelo:
- 3) Resultados de pruebas de requerimiento de corriente eléctrica, ubicación y características de camas anódicas provisionales, condiciones de operación de la fuente de corriente eléctrica directa provisional, resistencia del circuito, perfil de potenciales naturales y de polarización, potencial máximo en el punto de impresión de corriente, y
- 4) Ubicación de estructuras metálicas ajenas a la tubería a proteger;

Memoria técnica del sistema de protección catódica (tiempo de vida, criterios, ubicación de camas anódicas, número, dimensiones y tipo de los ánodos utilizados, densidad de corriente eléctrica, resistencia total de circuito, por ciento de área desnuda a proteger, especificación de materiales y equipo, cálculos, recomendaciones, prácticas de ingeniería, normas, códigos, reglamentos y regulaciones observadas durante la implementación);

Resultados de pruebas de interacción con otros sistemas eléctricos ajenos al sistema de protección catódica (líneas de alta tensión, sistemas de tierras, estructuras metálicas vecinas protegidas o no catódicamente y dependencias involucradas);

b) Instalación:

Planos y diagramas del sistema de protección catódica tal y como fue instalado. (Arreglos constructivos de la cama anódica, de la fuente externa de corriente eléctrica directa, conexiones eléctricas cable-ducto, ducto-estación de registro de potencial, puenteos eléctricos entre ductos);

Permisos internos y externos;

Afectaciones a otras estructuras y/o sistemas de protección catódica a terceros;

Modificaciones constructivas, adecuaciones, y

Resultados de las pruebas durante la puesta en operación del sistema de protección catódica y ajustes de campo.

En el caso de tuberías existentes se debe presentar la información que asegure que el ducto se encuentra protegido catódicamente y que no presenta interacción con otros sistemas eléctricos adyacentes a su trayectoria. Asimismo, se debe establecer un método permanente para completar la información documental requerida para ductos nuevos.

3.12.2 Interacción con estructuras y sistemas de otras dependencias. Es esencial que durante la planeación, instalación, prueba, puesta en marcha y operación de un sistema de protección catódica se notifiquen dichas acciones a las entidades que tengan a su cargo sistemas de tubería de acero enterradas, cables u otras estructuras (ductos de agua, cableado telefónico, líneas de fibra óptica y líneas de alta tensión), próximas a la instalación. Dicha notificación se debe realizar con una anticipación mínima de un mes y por escrito.

Lo anterior, con el propósito de asegurar que el sistema sea instalado de tal manera que la interacción de la protección catódica con sistemas y estructuras vecinas sea mínima.

- **3.13** Registros. Los registros de control de la corrosión deben documentar en forma clara, concisa y metódica la información relacionada a la operación, mantenimiento y efectividad del sistema de protección catódica.
- **3.13.1** Funcionalidad del sistema de protección catódica. Se debe registrar la fecha de puesta en servicio del sistema de protección catódica, los levantamientos de potencial, inspecciones y pruebas realizadas para comprobar que no existen interferencias y asegurar que los aislamientos, recubrimientos y encamisados se encuentran funcionando satisfactoriamente.

Los registros del sistema de protección catódica se deben conservar durante el tiempo que las instalaciones permanezcan en servicio.

- **3.13.2** Modificaciones al sistema original. Todas las modificaciones que se efectúen al sistema de protección catódica original deben registrarse anotando la fecha y modificación realizada, de manera que forme parte de la documentación conforme con lo indicado en los puntos 3.13 y 3.13.1 de este Apéndice, anexando memorias y planos de ingeniería en caso de rehabilitaciones mayores como cambio de capacidad del rectificador y cambio de ubicación de la cama anódica, entre otras.
- **3.13.3** Reparación o reemplazo de algún componente del sistema de protección catódica. Se deben registrar las reparaciones o reemplazos cuando las inspecciones y pruebas periódicas realizadas indiquen que la protección no es efectiva. Dichas pruebas pueden ser, entre otras:
 - a) Reparación, reemplazo o ajuste de componentes del sistema de protección catódica;
 - b) Aplicación del recubrimiento en las áreas desnudas;
 - c) Interferencia de cualquier estructura metálica en contacto con la tubería y su localización;
 - d) Reposición de los dispositivos de aislamiento dañados;
 - e) Acciones para corregir corto circuitos en tuberías encamisadas, y
 - f) Pruebas de interferencia con estructuras cercanas.
- **3.13.4** Estudios especiales. Se deben registrar todos los resultados obtenidos de investigaciones especiales como son, entre otros: estudios de levantamiento de potenciales a intervalos cortos, inspección del recubrimiento dieléctrico mediante gradiente de voltaje de corriente eléctrica directa, así como cualquier otra investigación referente a la efectividad del sistema de protección catódica. Esta información debe formar parte del historial de la protección catódica del ducto.

APENDICE III

MONITOREO, DETECCION Y CLASIFICACION DE FUGAS DE GAS NATURAL Y GAS LP EN DUCTOS INDICE

- 1. Objetivo
- 2. Definiciones
- 3. Detección de fugas
- 4. Instrumentos para detección de fugas
- 5. Clasificación de fugas y criterios de acción
- Historial de fugas y lineamientos para autoevaluación
- 7. Anexo

1. Objetivo

En este Apéndice se establecen los requisitos mínimos para el monitoreo, detección y clasificación de fugas de gas natural y gas LP en ductos, que deben cumplir los permisionarios de los sistemas de distribución por medio de ductos que operen en la República Mexicana.

2. Definiciones

Para efectos de aplicación de este Apéndice se establecen las definiciones siguientes:

- **2.1 Acción inmediata:** El envío sin retraso de personal calificado para evaluar y, en su caso, abatir el riesgo existente o probable derivado de una fuga de gas.
- **2.2 Espacio confinado:** Cualquier estructura tal como registros de válvulas, túneles, cárcamos o registros de drenaje en la cual se puede acumular el gas.
- **2.3 Fuga de gas:** Cualquier emisión de gas en un ducto, debido a fractura, ruptura, soldadura defectuosa, corrosión, sellado imperfecto o mal funcionamiento de accesorios y dispositivos utilizados en éste.
- **2.4 Indicador de gas combustible:** El instrumento capaz de detectar y medir la concentración de una mezcla de gas combustible en el aire.
 - 2.5 Lectura: La indicación repetible en un instrumento de medición analógico o digital.
- **2.6 Monitoreo de fugas:** El conjunto de actividades que se realizan periódicamente para detectar y clasificar fugas de gas conducido en sistemas de transporte y distribución por ductos.
- **2.7 Perforación de barra, pozo de muestreo o sondeo:** La perforación de un diámetro no mayor a 5 centímetros que se hace en el suelo cercano a una instalación subterránea, específicamente para verificar la existencia de gas debajo de la superficie del suelo con un indicador de gas combustible.
- 2.8 Subestructura asociada con el gas: El dispositivo o estructura subterránea utilizado en una instalación de gas para alojar, entre otros, registros con válvulas, estaciones de medición y regulación, cajas de pruebas y tubos encamisados con ventilación, que no tiene como propósito almacenar, transportar o distribuir gas.
- **2.9 Subestructura no asociada con el gas:** Las estructuras no relacionadas con el transporte o la distribución de gas, que se localizan debajo de la superficie del suelo, tales como, registros y ductos de instalaciones eléctricas, telefónicas, de señales de tráfico, de agua y drenaje, a las cuales puede migrar y/o acumularse el gas y que no tienen como propósito alojar personas.

3. Detección de fugas

Para la aplicación de este Apéndice se establecen los valores de concentración de gas en porcentaje/volumen para los límites de explosividad de mezcla de gas natural y de gas LP con aire, en la tabla siguiente:

Tabla 1.- Límites de explosividad en porcentaje/volumen de concentración de gas en aire

Límite de explosividad	Gas natural	Gas LP (1)
Límite Inferior de Explosividad (LIE)	5	1,9
Límite Superior de Explosividad (LSE)	15	9,5

⁽¹⁾ Se refiere a las propiedades del gas propano.

- 3.1 Atención a reportes de fugas. El permisionario debe investigar en forma inmediata cualquier notificación o aviso de terceros en el que se reporte olor a gas, fuga, incendio o explosión que pueda involucrar a tuberías de gas u otras instalaciones. Si la investigación confirma una fuga, ésta se debe clasificar inmediatamente de acuerdo con el inciso 5.1 y tomar la acción correspondiente de acuerdo con las tablas 2, 3 y 4 de este Apéndice.
- 3.1.1 Olores o indicaciones de otros combustibles. Cuando existan indicaciones de fuga de combustibles derivados del petróleo originados en otras instalaciones, se deben tomar las acciones siguientes para proteger la integridad física de las personas y de sus propiedades:
 - Informar de inmediato al operador de la instalación y, si es necesario, a los bomberos, policía y protección civil, y
 - Cuando la tubería del permisionario esté conectada a una instalación ajena que tenga fuga de gas, b) el permisionario, para evitar riesgos, debe tomar de inmediato las acciones necesarias de acuerdo con la tabla 2 de este Apéndice.
- 3.2 Recursos necesarios para efectuar la inspección. El permisionario, para realizar la inspección de sus instalaciones, debe disponer de los recursos siguientes:
- 3.2.1 Recursos humanos. Debe contar con personal suficiente, que reúna la calificación y experiencia requeridas para aplicar el método de inspección que se utilice.
- 3.2.2 Recursos materiales. Para la inspección de fugas en un sistema de ductos, se debe disponer de los recursos materiales siguientes:
 - Planos vigentes de la red de distribución o línea de transporte con escala y grado de detalle adecuados;
 - Equipos de detección de fugas adecuados para obtener información necesaria para la localización y cuantificación de fugas de acuerdo con las características de sus instalaciones y los métodos de inspección que se apliquen, y
 - Equipo de transporte adecuado para la atención de fugas.
- 3.3 Métodos de detección de fugas. El permisionario puede aplicar para la detección de fugas en sus instalaciones, individualmente o combinados, los métodos siguientes:
 - Con indicadores de gas combustible;
 - Sobre la superficie del suelo
 - Debajo de la superficie del suelo
 - Inspección visual de la vegetación; b)
 - c) Caída de presión;
 - d) Burbujeo;
 - e) Ultrasonido;
 - Fibra óptica;
 - g) Termografía infrarroja terrestre o aérea, y
 - h) Perros adiestrados.

El permisionario puede emplear otros métodos siempre y cuando se apliquen de acuerdo con los procedimientos escritos que prueben que dichos métodos son tan eficaces como los de la lista anterior. La aplicación del método adecuado es responsabilidad del permisionario, quien debe determinar que no existe fuga o en caso de que exista, ésta se debe detectar, localizar, clasificar y controlar inmediatamente.

- 3.3.1 Detección con indicadores de gas combustible. El equipo para realizar esta inspección puede ser portátil o móvil. El indicador debe ser del tipo y sensibilidad adecuados, de acuerdo con las instrucciones del fabricante, para el método de detección de gas natural o de gas LP que se aplique en la instalación inspeccionada.
- 3.3.1.1 Detección sobre la superficie del suelo. Para instalaciones subterráneas se debe tomar un muestreo continuo de la atmósfera al nivel del suelo sobre o lo más cerca posible de la instalación. Para instalaciones arriba del nivel del suelo, se debe tomar un muestreo continuo de la atmósfera adyacente a dicha instalación.

- a) Para instalaciones subterráneas, se deben tomar muestras de la atmósfera a no más de cinco centímetros de la superficie del suelo, cuando sea posible, y en todas aquellas irregularidades del terreno que faciliten que el gas aflore. En áreas donde la tubería está debajo de piso terminado, entre otras: banquetas y calles pavimentadas, se deben tomar muestras del aire cercano a discontinuidades e irregularidades del piso, tales como: aberturas, ranuras, rupturas y grietas que faciliten que el gas aflore. Asimismo, se debe analizar el aire dentro de recintos cerrados alojados en aberturas del piso debajo de su nivel, cercanos a la tubería, por ejemplo, pozos de visita, registros de drenaje, de instalaciones eléctricas, telefónicas y otros servicios.
- b) El muestreo de la atmósfera superficial con indicador de gas se debe realizar a la velocidad y en condiciones atmosféricas adecuadas para que dicho muestreo sea correcto. La operación del indicador de gas debe realizarse de acuerdo con las instrucciones del fabricante. Se deben analizar muestras en los lugares especificados en el párrafo anterior.
- **3.3.1.2** Detección debajo de la superficie del suelo. El muestreo de la atmósfera debajo del piso se debe realizar en aberturas existentes y/o sondeos arriba y/o adyacentes a la tubería. Los pozos de muestreo se deben perforar lo más cerca posible a la tubería y lateralmente a no más de 5 metros del eje de la misma. A lo largo de la tubería los puntos de prueba se deben localizar a no más del doble de la distancia entre la tubería y la pared de edificio más cercana o 10 metros, la que sea más corta, pero en ningún caso el espaciamiento debe ser menor a 3 metros. El patrón del muestreo debe incluir puntos de prueba adyacentes a las conexiones de las líneas de servicio, acometidas a los edificios, cruzamientos de calles y conexiones de ramales. El Anexo describe el procedimiento para localizar fugas por perforación de barra.
- **3.3.2** Detección por inspección visual de la vegetación. Este método tiene por objeto detectar indicaciones anormales o inusuales en la vegetación que puedan haber sido causadas por la migración de gas. Dichas indicaciones de fugas de gas deben confirmarse usando un indicador de gas combustible. La inspección debe ser realizada por personal experto que tenga una buena visión del área que está inspeccionando y sus alrededores. Para determinar la velocidad de recorrido se debe considerar lo siguiente:
 - a) Trazo del sistema de transporte o distribución;
 - b) Cantidad y tipo de vegetación, y
 - c) Condiciones de visibilidad tales como: alumbrado, reflejo de luz, distorsiones u obstrucciones del terreno.
- **3.3.2.1** El método de inspección visual del estado de la vegetación sólo se puede aplicar en áreas en donde el crecimiento de la vegetación está bien definido. No se debe emplear cuando el grado de humedad del suelo sea anormalmente alto, cuando la vegetación está inactiva, o cuando está en periodo de crecimiento acelerado, como en el comienzo de la primavera.
- **3.3.3** Detección por caída de presión. Este método se aplica para determinar si una sección aislada de la instalación de gas pierde presión por fugas. La sección seleccionada debe tener solamente una presión de operación y dicha sección debe aislarse antes de efectuar la prueba de caída de presión. Para determinar los parámetros de la prueba de caída de presión, se deben tomar en cuenta los criterios siguientes:
 - a) Presión de prueba. Si la prueba se realiza únicamente con el propósito de detectar fugas en la sección aislada, se debe hacer cuando menos a la presión de operación.
 - b) Medio de prueba. El medio debe ser compatible con los materiales de la tubería, debe estar libre de materiales sedimentarios y no debe dejar residuos que puedan dañar la instalación. El medio para realizar la prueba no debe ser inflamable, puede ser agua, aire o gas inerte, excepto cuando se utiliza el gas natural o gas LP que conduce la tubería, y
 - c) Duración de la prueba. El tiempo de la prueba debe ser suficiente para detectar la caída de presión debida a fugas. Para determinar el tiempo necesario para realizar la prueba se deben considerar los factores siguientes:
 - i. El tiempo y volumen requerido para que el medio de prueba alcance la presión de prueba;
 - ii. El tiempo necesario para que el medio de prueba estabilice su temperatura, y
 - iii. La sensibilidad del instrumento de prueba.
- **3.3.3.1** El método de caída de presión no localiza las fugas, por lo que se requiere una evaluación posterior con otro procedimiento que permita localizar las fugas para evaluarlas y clasificarlas.
- **3.3.4** Detección por burbujeo. Este método consiste en cubrir totalmente la tubería con una solución tensoactiva que forme burbujas, entre otras, agua jabonosa para señalar las fugas sobre la superficie expuesta de la instalación. La solución utilizada no debe dañar ni debe dejar residuos que posteriormente puedan producir corrosión en los materiales de la instalación probada.

- **3.3.5** Detección por ultrasonido. Este método consiste en la instalación de sensores ultrasónicos espaciados a lo largo de la tubería que pueden detectar la ocurrencia de una fuga en tiempo real, por la energía ultrasónica que se genera desde el momento en que ocurre. Las ondas viajan en todas direcciones del sitio de la fuga, lo que permite detectarlas a grandes distancias. Este método se puede acoplar a un sistema de geoposicionamiento.
 - 3.3.5.1 Para probar una instalación de gas por ultrasonido se debe tomar en consideración lo siguiente:
 - a) Presión en la tubería. Dado que al incrementarse la presión en la tubería, la magnitud de la energía ultrasónica generada por la fuga aumenta, los sensores deben ser adecuados para la presión de trabajo de la instalación;
 - b) Localización de la instalación. Los objetos alrededor de la instalación bajo prueba pueden reflejar o atenuar la energía ultrasónica generada dificultando la detección de la fuga;
 - c) Cantidad de fugas. La capacidad de detección de este método se reduce conforme se incrementa el número de fugas en un área determinada, ya que pueden producir un nivel alto de ruido ultrasónico debido al aumento de la energía ultrasónica liberada por cada fuga, y
 - d) Tipo de instalación. Los equipos neumáticos y los operados con gas, entre otros: compresores, motores y turbinas, generan energía ultrasónica. Se debe conocer la localización, cantidad y características de dichos equipos cerca de la instalación para determinar si el ruido ultrasónico que producen puede causar interferencia al equipo de detección de fallas. El área de prueba, se debe recorrer para verificar la posible presencia de interferencias.
- **3.3.5.2** El permisionario debe confirmar los resultados obtenidos por ultrasonido aplicando los métodos adecuados para detectar fugas en sus instalaciones.
- **3.3.6** Detección por fibra óptica. Este método consiste en la instalación de sensores y cable de fibra óptica en los ductos para monitorear, detectar y diagnosticar el desempeño de dichas instalaciones. Se usa para detectar y monitorear fugas de gas en tiempo real.
- **3.3.7** Detección por termografía infrarroja terrestre o aérea. Este método se usa en tuberías superficiales y subterráneas. Mide la energía térmica del gas natural o el gas LP mediante un espectrómetro de banda infrarrojo como elemento primario de detección. El instrumento puede acoplarse a un sistema de geoposicionamiento para ubicar las fugas.
- **3.3.8** Detección por medio de perros adiestrados. La raza labrador es la más comúnmente usada ya que puede detectar el odorizante adicionado en la corriente del fluido. El perro localiza y rastrea el olor que sale por la fuga hasta el punto de máxima concentración.

4. Instrumentos para detección de fugas

El permisionario es responsable de utilizar los instrumentos indicadores de gas combustible adecuados para los métodos de detección de fugas que aplique en sus instalaciones, con el objeto de obtener información veraz, confiable y completa sobre las fugas de gas.

- **4.1** Mantenimiento de indicadores de gas combustible. El mantenimiento de estos instrumentos se debe efectuar de acuerdo con las instrucciones del fabricante y, entre otras acciones, se deben cumplir las siguientes:
 - Cada instrumento utilizado para detectar y evaluar fugas de gas se debe operar de acuerdo con los instructivos del fabricante;
 - **b)** Revisar periódicamente los instrumentos cuando están en uso para asegurar que el suministro de energía eléctrica para su funcionamiento es adecuado;
 - c) Probar los instrumentos antes de usarse para asegurar que el sistema de muestreo esté libre de fugas y que los filtros no obstruyan el flujo de la muestra, y
 - d) Los instrumentos de ionización de flama de hidrógeno se deben probar cada vez que se encienden y durante la inspección.
- **4.2** Calibración de indicadores de gas combustible. Para la calibración de estos instrumentos se deben cumplir, entre otras, las recomendaciones siguientes:
 - Cada equipo utilizado para la detección y evaluación de fugas se debe calibrar de acuerdo con los instructivos del fabricante después de cualquier reparación o reemplazo de partes;
 - b) De conformidad con un programa regular en el que se considere el tipo del instrumento y su uso, los instrumentos de ionización de flama de hidrógeno y los indicadores de gas combustible, se deben calibrar al menos una vez al mes cuando están en uso, y
 - c) Se deben calibrar, cuando se sospeche que la calibración del instrumento ha cambiado.

5. Clasificación de fugas y criterios de acción

En este capítulo se establece el procedimiento por medio del cual las fugas son clasificadas y controladas. Cuando se detecta una fuga, el primer paso debe ser la delimitación del área afectada por la fuga; si el perímetro se extiende hacia un edificio, la inspección se debe continuar dentro del mismo. Cuando se confirma la fuga, se debe atender inmediatamente para localizarla, evaluarla y clasificarla de acuerdo con el inciso 5.1 de este Apéndice.

- **5.1** Clasificación de las fugas. Basados en la evaluación realizada de la localización y magnitud de la fuga, ésta se debe clasificar con objeto de establecer la prioridad de su reparación. La clasificación es la siguiente:
- **5.1.1** Grado 1. Son aquellas fugas que representan un peligro inminente para las personas o propiedades, por lo que, cuando se detectan deben ser reparadas inmediatamente y/o realizar acciones continuas hasta lograr que las condiciones dejen de ser peligrosas. Se considera peligrosa toda situación en la que haya probabilidad de asfixia, incendio o explosión en el área afectada por la fuga.
- **5.1.2** Grado 2. Esta clase de fugas no son peligrosas cuando se detectan, pero representan un riesgo probable para el futuro, por lo que se requiere programar su reparación para prevenir que se vuelvan peligrosas.
- **5.1.3** Grado 3. Esta clase de fugas no son peligrosas cuando se detectan y tampoco representan un riesgo probable para el futuro, por lo que, sólo es necesario reevaluarlas periódicamente hasta que sean reparadas.
- **5.2** Criterios para clasificar fugas y determinar acciones. Los lineamientos para clasificar y controlar fugas se describen en las tablas 2, 3 y 4 siguientes. Los ejemplos de condiciones de fuga que se presentan en dichas tablas son enunciativas mas no limitativas. El criterio y experiencia del personal operativo en el sitio donde ocurre la fuga es de suma importancia en la determinación del grado que se le asigne a la fuga y los criterios de acción indicados en dichas tablas.
- **5.3** Inspección subsecuente. Todas las reparaciones de fugas se deben probar, en su caso, antes de que la instalación entre en operación, para confirmar que no persiste la fuga de gas. En tuberías subterráneas, esta prueba se debe hacer antes de taparlas con tierra. Cuando entre en operación la instalación, se debe inspeccionar el área afectada por la fuga con un indicador de gas combustible. Donde haya gas residual después de la reparación de una fuga de grado 1, se debe permitir la ventilación y estabilización de la atmósfera del suelo para realizar una inspección subsecuente en un plazo que no debe exceder de un mes posterior a la reparación. En el caso de reparaciones de fugas de grado 2 o 3, el permisionario determinará si es necesario efectuar una inspección subsecuente.
- **5.4** Cuando se reevalúa una fuga de acuerdo con los criterios de acción de las tablas 3 y 4, ésta se debe clasificar usando el mismo criterio que cuando la fuga fue descubierta.

Tabla 2. Fugas de grado 1

EJEMPLO	CRITERIO DE ACCION
 Cualquier fuga que, a juicio del personal operativo en el sitio de la fuga, se considere un peligro inmediato. Cualquier escape de gas que se haya encendido. 	vida y propiedades de las personas, y de acciones continuas hasta lograr que las condiciones dejen
3. Cualquier indicación de que el gas haya migrado al interior o debajo de un edificio o dentro de un túnel.	·
4. Cualquier indicación de presencia de gas en el lado exterior de la pared de un edificio, o donde es probable que el gas migre al lado exterior de la pared de un edificio.	·
5. Cualquier lectura mayor o igual que 80% (ochenta por ciento) del LIE del gas en un espacio confinado.	,
6. Cualquier lectura mayor o igual que 80% (ochenta por ciento) del LIE del gas en otras subestructuras pequeñas, no asociadas con el gas por las cuales es probable que el gas migre al lado exterior de la pared de un edificio.	c) Acordonamiento del área;
7. Cualquier fuga que pueda ser detectada por medio de la vista, oído u olfato, y que está en una localización que puede ser peligrosa para las personas y sus bienes.	g) Suspensión del flujo de gas cerrando las

Tabla 3. Fugas de grado 2

EJEMPLO CRITERIO DE ACCION 1. Fugas que requieren tomar acciones antes de Estas fugas se deben reparar en el transcurso de que ocurran cambios adversos en las condiciones un año calendario pero en un tiempo no mayor a de venteo del suelo, por ejemplo: una fuga que 15 meses de la fecha en que fue reportada. cuando se congele el suelo, es probable que el gas Para determinar la prioridad en la reparación se migre al lado exterior de la pared de un edificio. deben seguir los criterios siguientes: 2. Se requieren tomar acciones en un plazo no a) Cantidad y migración del gas; mayor de 6 meses para reparar las fugas, cuando b) Proximidad del gas a edificios y estructuras las lecturas del indicador de gas combustible, en debajo del suelo: porcentaje del LIE, tengan los valores siguientes: a) Mayor o igual de 40% (cuarenta por ciento) c) Extensión del piso terminado: debajo de las banquetas en una calle cubierta de d) Tipo de suelo y condiciones del mismo (tales pared a pared con piso terminado, por ejemplo como la capa congelada, humedad y venteo pavimento v/o concreto v la fuga no se califica natural), y como grado 1. e) Concentración de fugas en un tramo de la b) Mayor o igual de 100% (cien por ciento) debajo instalación. de la calle cubierta de pared a pared con piso Las fugas grado 2 se deben reevaluar cuando terminado, por ejemplo pavimento y/o concreto, que menos una vez cada 6 meses, hasta que sean tiene una migración de gas significativa y la fuga no reparadas. La frecuencia de reevaluación se debe se califica como grado 1. determinar de acuerdo con su localización, c) Menor de 80% (ochenta por ciento) dentro de magnitud y condiciones de la fuga. subestructuras pequeñas no asociadas con el gas. El grado de peligro potencial de las fugas grado 2 donde es probable que el gas migre para crear un puede variar ampliamente. Cuando son evaluadas peligro futuro. de acuerdo con su localización, magnitud y d) Entre 20% (veinte por ciento) y 80% (ochenta por condiciones, para algunas fugas grado 2 se puede ciento) en un espacio confinado. justificar que su reparación se programe dentro de e) Cualquier valor en una tubería que opere a 30% los siguientes 5 días. En cambio, para otras se (treinta por ciento) o más de su Resistencia Mínima puede justificar que su reparación se programe dentro de los siguientes 30 días. El responsable de a la Cedencia. localizada en clase 3 o 4. de acuerdo con esta Norma y la fuga no se califica programar la reparación debe cuidar las condiciones de la fuga durante el día en el cual se como grado 1. descubre dicha fuga. f) Mayor o igual de 80% (ochenta por ciento) en una subestructura asociada con el gas. Por otro lado, la reparación de muchas fugas grado 2, puede ser programada, considerando su g) Cualquier fuga que a juicio del personal localización y magnitud, para realizarse con base operativo en el sitio de la fuga, considere que tiene

Tabla 4. Fugas de grado 3

suficiente para programar

la magnitud

reparación.

en una rutina de mantenimiento, con inspecciones

periódicas cuando sea necesario.

Tubia 4. Tug	5	
EJEMPLO	CRITERIO DE ACCION	
Estas fugas requieren reevaluarse a intervalos periódicos cuando las lecturas del indicador de gas combustible, en porcentaje del LIE, tengan los valores siguientes: a) Menor de 80% (ochenta por ciento) en subestructuras asociadas al gas.	Estas fugas deberán ser reevaluadas en el siguiente monitoreo programado o en los 15 meses siguientes a la fecha en que fue reportada, lo que ocurra primero, hasta que la fuga sea reclasificada o no haya más lecturas.	
b) Cualquier valor debajo de la calle en áreas que no están pavimentadas completamente, donde no es probable que el gas pudiera migrar al lado exterior de la pared de un edificio.		
c) Menor de 20% (veinte por ciento) en un espacio confinado.		

6. Historial de fugas y lineamientos para autoevaluación

El permisionario debe conservar la documentación que demuestre cada monitoreo de fugas de acuerdo con los resultados, conclusiones y acciones realizadas.

El permisionario debe mantener los registros actualizados de dicha documentación para ser proporcionada, cuando sea requerida por la autoridad competente. Esta documentación debe estar sustentada por los registros siguientes:

- **6.1** Los registros de fugas deben contener al menos la información siguiente:
- La fecha de detección de la fuga, la fecha y la hora del reporte, el tiempo en que se atendió, el tiempo en que se investigó y el nombre de quien la investigó;
- b) La descripción detallada de la fuga, su localización, magnitud y grado que se le asignó;
- Tratándose de una fuga que deba ser reportada, la fecha y la hora del reporte telefónico a la autoridad competente y el nombre de quien lo hizo;
- d) Las fechas de las reevaluaciones antes de la reparación de la fuga y el nombre del responsable de dichas reevaluaciones;
- e) La fecha de reparación, el tiempo que llevó la reparación y el nombre del responsable de la reparación;
- f) Las fechas de revisiones posteriores a la reparación y el nombre de los responsables de dichas revisiones;
- g) El método usado para detectar la fuga (si fue reportado por terceros, el nombre y la dirección de quién reportó);
- h) La sección del sistema donde ocurrió la fuga (tubería principal, tubería de servicio, etc.);
- i) La parte del sistema en que ocurrió la fuga (tubería, válvula, conexión, estación de regulación, etc.);
- j) El material en el cual ocurrió la fuga (acero, plástico u otro);
- k) El origen de la fuga;
- I) La descripción de la tubería;
- m) El tipo de reparación efectuada;
- n) La causa de la fuga;
- La fecha de instalación de la tubería;
- p) Si tiene protección catódica operando, y
- q) La lectura del indicador de gas combustible.
- 6.2 Los registros de monitoreos de fuga deben contener al menos la información siguiente:
- a) La fecha en que se realizó el monitoreo;
- b) La descripción del sistema y del área monitoreada. Se deben incluir los planos y/o libros bitácora;
- c) Los resultados del monitoreo, las conclusiones y las acciones a seguir;
- d) Los métodos aplicados en el monitoreo, y
- e) El personal que efectuó el monitoreo.
- 6.2.1 Los registros de las pruebas de caída de presión deben contener al menos la información siguiente:
- El nombre del responsable de la prueba. En caso de que haya sido realizada por una empresa externa, el nombre de la empresa y el nombre de la persona responsable de la prueba;
- b) El medio de prueba usado;
- c) La presión de prueba;
- d) La duración de la prueba;
- e) Las gráficas de presión o los registros de las presiones medidas en la prueba, y
- f) Los resultados de la prueba.

- **6.3** Autoevaluación. El permisionario debe evaluar su programa de monitoreo de fugas realizados para determinar la efectividad de dicho programa. Esta autoevaluación debe realizarse cuando menos una vez al año de acuerdo con el procedimiento siguiente:
 - a) Programa de monitoreo de fugas. Se debe asegurar que el programa de mantenimiento del sistema cumple con esta Norma;
 - b) Efectividad del monitoreo. Se debe asegurar que los monitoreos de fugas fueron efectuados de acuerdo con el programa y que los resultados fueron satisfactorios en todo el sistema;
 - Programa de reparación. Se debe comprobar que las reparaciones de fugas fueron efectuadas de acuerdo con el programa y los procedimientos especificados;
 - d) Efectividad de la reparación. Se debe verificar que las reparaciones de fugas fueron realizadas con la efectividad indicada en los procedimientos aplicados, y
 - e) Registro histórico de fugas. Se debe mantener actualizado el historial de fugas.

7. ANEXO

Localización de fugas por perforación de barra

Este procedimiento se aplica para localizar el lugar preciso de fuga en instalaciones subterráneas y tiene por objeto minimizar la excavación para disminuir costos y evitar pérdida de tiempo en la localización y reparación de fugas. El permisionario es responsable de aplicar el procedimiento adecuado para localizar fugas por sondeos en sus instalaciones. Con fines informativos se presenta a continuación una descripción general de este procedimiento.

- Se debe delimitar la zona de migración del gas realizando un muestreo de la atmósfera superficial con indicadores de gas combustible. Normalmente la fuga se localiza en esta área;
- b) Se deben identificar todas las tuberías de gas dentro del área delimitada y localizar las válvulas, conexiones y accesorios, porque son los lugares con mayor probabilidad de fuga. Se debe poner especial cuidado para no dañar otras instalaciones subterráneas que estén dentro del área delimitada, durante la excavación y perforación para localizar fugas;
- c) Se deben buscar en el área delimitada evidencias de construcción recientes que pudieran haber dañado la tubería de gas provocando la fuga. Se debe tomar en cuenta que el gas también puede migrar y ventilarse a lo largo de algunas zanjas de otros servicios subterráneos;
- d) Se deben hacer perforaciones equidistantes sobre la línea de gas que se sospeche tiene fuga. Todos los pozos de muestreo deben tener igual profundidad y diámetro. Las muestras de gas deben tomarse a la misma profundidad y donde sea necesario los sondeos deben bajar hasta la profundidad del tubo para obtener lecturas consistentes y útiles. Para localizar la fuga de gas se identifican los sondeos con las lecturas más altas;
- e) En caso de encontrar lecturas altas en varias perforaciones adyacentes se requiere de procedimientos adicionales para determinar cuál es la lectura más cercana al probable punto de fuga. Las lecturas de algunos sondeos disminuirán con el tiempo, pero es conveniente acelerar este proceso extrayendo el exceso de gas de las perforaciones. Cuando se recupere el gas que está migrando dentro de las perforaciones se toman nuevas lecturas para determinar la perforación más cercana a la fuga. Este procedimiento se debe aplicar con precaución para evitar la distorsión del patrón de venteo;
- f) Una vez identificado el lugar aproximado de la fuga, se deben hacer pozos de muestreo adicionales más profundos para determinar el lugar probable de la fuga con mayor exactitud;
- g) Para determinar cuál de las perforaciones tiene el mayor flujo de gas se pueden hacer lecturas adicionales en la parte superior de ellas o usar un manómetro o solución tensoactiva que forme burbujas. Asimismo, pueden ser útiles otras indicaciones en los pozos, tales como: las partículas de polvo sopladas, el sonido o sentir en la piel el flujo del gas. En ocasiones es posible distinguir la difracción de la luz solar cuando el gas se ventea a la atmósfera;
- Cuando el gas se localiza dentro de algún conducto subterráneo ajeno a las tuberías de gas, se deben tomar muestras en todas las aberturas que se tengan disponibles en dicho conducto para aislar la fuga de gas;
- i) Cuando se logran lecturas estables del indicador de gas se determina el patrón de venteo. El sondeo con la lectura más alta normalmente será el punto exacto de la fuga, y
- j) Una vez descubierta, se puede usar cualquier procedimiento para localizar la fuga en la tubería, como el burbujeo para fugas pequeñas.

Medidas precautorias

En ocasiones, situaciones especiales pueden complicar las técnicas de localización de fugas por sondeos. Estas situaciones no son comunes pero son factibles, entre otras, se citan las siguientes:

- Puede ocurrir una fuga múltiple que ocasione información confusa. Para eliminar esta posibilidad el área afectada debe revisarse después de reparada la fuga;
- b) El gas se puede acumular en alguna cavidad y dar una indicación elevada hasta que dicha cavidad es venteada;
- c) Otros gases, tales como los que se forman por material orgánico en descomposición se pueden encontrar ocasionalmente, esto es característico cuando se encuentran lecturas constantes de entre 15 y 30% (treinta por ciento) de concentración gas en aire;
- d) La indicación del gas en drenajes se debe considerar como gas de una fuga migrando al drenaje, hasta que sea descartado por otros medios o por análisis, y
- f) Cuando el procedimiento de localización de fugas por sondeos se utilizan para tuberías de gas LP, se debe tomar en cuenta que dicho gas es más pesado que el aire, por lo que permanece normalmente debajo del aire, cerca del nivel de la tubería, pero cuando el suelo donde está dicha tubería tiene pendiente, el gas puede fluir hacia lugares bajos. El gas LP normalmente no se difunde rápidamente o migra lejos, por lo que la fuga usualmente se encuentra cerca de donde es detectado por el indicador de gas combustible. Si el gas se dispersa dentro de un conducto subterráneo tal como un sistema de drenaje, el gas puede viajar a grandes distancias.

APENDICE IV

PROCEDIMIENTO PARA LA EVALUACION DE LA CONFORMIDAD

INDICE

- 1. Objetivo y alcance
- 2. Definiciones
- 3. Procedimiento
- 4. Disposiciones generales
- 5. Sistema de distribución de gas
- 6. Odorización del gas natural
- 7. Control de la corrosión externa en tuberías de acero enterradas y/o sumergidas
- 8. Monitoreo, detección y clasificación de fugas de gas natural y gas LP

1. Objetivo y alcance

El presente Procedimiento para la Evaluación de la Conformidad (PEC) tiene por objeto establecer la metodología para determinar el grado de cumplimiento de los sistemas de distribución de gas por ductos con esta norma (NOM). Este procedimiento comprende la revisión de información documental y la verificación en campo de las partes principales del sistema de distribución de gas, que son las siguientes:

Sistema de control de calidad

Sistema de distribución de gas,

Odorización del gas natural

Control de la corrosión externa en tuberías de acero enterradas y/o sumergidas

Monitoreo, detección y clasificación de fugas de gas natural y gas LP

2. Definiciones

Para efectos del presente PEC se establecen las siguientes definiciones:

2.1 Acta circunstanciada: El documento expedido en cada una de las visitas de verificación realizadas, en el cual se hará constar por lo menos: nombre, denominación o razón social del distribuidor; hora, día, mes y año, en que se inicie y en que concluya la diligencia; calle, número, población o colonia, teléfono u otra forma de comunicación disponible, municipio o delegación, código postal y entidad federativa en que se encuentre ubicado el domicilio del distribuidor, número y fecha del oficio de comisión que la motivó; nombre y cargo de la persona con quien se entendió la diligencia; nombre y domicilio de las personas que fungieron como testigos; datos relativos a la actuación, y nombre y firma de quienes intervinieron en la diligencia;

- **2.2 Dictamen:** El documento emitido por la Comisión o por la UV en el cual se resume el resultado de la verificación que realizó al sistema de distribución de gas para evaluar la conformidad con la NOM;
 - 2.3 Evaluación de la conformidad: La determinación del grado de cumplimiento con la NOM;
- **2.4 Evidencia objetiva:** La información que puede ser probada como verdadera, basada en hechos obtenidos por medio de observación, medición, prueba u otros medios, y
- **2.5 Registro:** El documento que provee evidencia objetiva de las actividades ejecutadas y de los resultados obtenidos.

3. Procedimiento.

- **3.1** La evaluación de la conformidad de los sistemas de distribución de gas con la NOM, se debe realizar de acuerdo con lo estipulado en la misma NOM.
- **3.2** La Comisión o el distribuidor pueden solicitar la evaluación de la conformidad con la NOM cuando lo requieran para dar cumplimiento a las disposiciones legales o para otros fines de su propio interés.
 - 3.3 La evaluación de la conformidad con la NOM debe ser realizada por la Comisión o por una UV.
- **3.4** La UV de acuerdo con el distribuidor debe establecer los términos y condiciones de los trabajos de verificación, excepto cuando la verificación sea requerida por la Comisión.
- **3.5** Para evaluar el grado de cumplimiento del sistema de distribución con lo dispuesto en la NOM, la UV debe realizar visitas de verificación en los términos de la LFMN y su Reglamento.
- **3.6** En cada visita de verificación la UV debe levantar una acta circunstanciada, en la cual debe asentar los cumplimientos con la NOM y, en su caso, los incumplimientos, para que el distribuidor haga las correcciones en el plazo que se le fije en dicha acta.
- **3.7** El distribuidor puede formular las observaciones que estime pertinentes y ofrecer pruebas a la UV durante la visita de verificación o dentro del plazo máximo de cinco días hábiles siguientes a la fecha en que se haya levantado el acta circunstanciada.
 - 3.8 La UV debe elaborar el dictamen con base en las actas circunstanciadas.
- **3.9** La UV debe entregar el dictamen de verificación al distribuidor que haya contratado sus servicios. El distribuidor debe entregar el dictamen a la Comisión, para los efectos legales que correspondan en los términos de la legislación aplicable.
- **3.10** Los gastos que se originen por los servicios de verificación deben ser a cargo del distribuidor en conformidad con el artículo 91 de la LFMN.

4. Disposiciones generales

- **4.1** En conformidad con el artículo 53 de la LFMN en los sistemas de distribución de gas a que se refiere la NOM se deben utilizar materiales, componentes y equipos que cumplan con las normas oficiales mexicanas y/o normas mexicanas aplicables.
- **4.1.1** Los materiales, componentes y equipos utilizados en los sistemas de distribución de gas sujetos al cumplimiento señalado en el párrafo anterior, deben contar con un certificado obtenido de conformidad con la LFMN.
- **4.1.2** En caso de no existir norma oficial mexicana o norma mexicana aplicable al material, componente o equipo de que se trate, la UV debe requerir el registro de cumplimiento con normas internacionales y en caso de no existir éstas, dicho producto debe cumplir con las prácticas internacionalmente reconocidas. En el supuesto de no contar con las normas mencionadas, el material, componente o equipo debe cumplir con las normas del país de origen o a falta de éstas, con las especificaciones del fabricante.
- **4.1.3** Los materiales, componentes y equipos que cumplan con las disposiciones establecidas en los párrafos anteriores, se consideran aprobados para los efectos de la NOM.
- **4.2** En conformidad con el artículo 56 de la LFMN los sistemas de distribución de gas deben contar con un manual de procedimientos integrado con documentos propios de la empresa, escritos en idioma español, en los que se describen en forma específica para el sistema evaluado, las funciones que se listan a continuación:
 - A. Organización.- Debe contener los puntos siguientes:
 - a) Los objetivos y la descripción del sistema de distribución de gas.
 - b) Los planes para el desarrollo y aplicación de nuevas tecnologías.
 - c) La estructura de la organización del personal encargado del funcionamiento y seguridad del sistema, en la que se definan los niveles jerárquicos y de decisión.
 - **d)** Descripción, definición de funciones y actividades, asignación de responsabilidades, relaciones de trabajo internas y externas a la empresa, y procedimientos operativos de cada puesto.

- B. Administración.- La administración debe comprender lo siguiente:
 - a) Control de trabajos y proyectos, preparación, desarrollo y resultados.
 - b) Control de desempeño del personal, programas de capacitación, incentivos y desarrollo.
 - c) Locales y equipo de oficina y servicios.
 - d) Sistemas de comunicación interna y externa.
- C. Soporte técnico.- Debe abarcar los puntos siguientes:
 - a) Debe haber un responsable y un suplente en cada una de las funciones básicas para la operación del sistema.
 - b) Normas y especificaciones técnicas aplicadas.
 - c) Control de equipo de medición y prueba.
 - d) Equipo para maniobras.
 - e) Compras y almacenes.

5. Sistema de distribución de gas

La UV debe realizar la revisión de información documental y la verificación en campo de los aspectos técnicos siguientes:

- A. Diseño
- B. Materiales y equipos
- C. Construcción y pruebas
- D. Operación y mantenimiento
- E. Seguridad
- 5.1 Revisión de información documental.

El objetivo es que la UV identifique el sistema de distribución por auditar, verifique que la documentación está completa y que las especificaciones de diseño y construcción, de materiales y equipo, así como los procedimientos de construcción, operación, mantenimiento y seguridad cumplen con los requisitos de la NOM y en lo no previsto por ésta, con las prácticas internacionalmente reconocidas. Para llevarla al cabo la UV debe recabar, entre otros, los documentos siguientes:

- a) Título de permiso y sus anexos;
- b) Las normas mexicanas y normas oficiales mexicanas indicadas en la NOM, y
- c) Las prácticas internacionalmente reconocidas aplicadas por el distribuidor para cubrir los aspectos no previstos por las normas mexicanas y las normas oficiales mexicanas aplicables, en conformidad con el anexo de autorregulación de Título de permiso.

A. Diseño

- 5.1.1 La UV debe revisar la información siguiente:
- a) Normas, códigos, estándares y procedimientos aplicados en el diseño del sistema de distribución;
- b) Memoria de cálculo de flujos y presiones para el diseño de la red de distribución, inclusive la comprobación de que cumple con los flujos y presiones requeridos en cualquier punto de la red cuando opera bajo las condiciones de demanda máxima;
- c) Procedimiento para la actualización del cálculo de flujos y presiones de acuerdo con los cambios en consumo y demanda de gas que se presenten en cada uno de los sectores que conforman el sistema;
- d) Memoria de cálculo para verificar que las dimensiones y resistencia mecánica de los materiales, componentes y equipos del sistema cumplen con los requisitos de la NOM;
- e) La memoria de cálculo que permita verificar que el trayecto e instalación de la tubería así como las obras especiales para protección de la tubería, por ejemplo, cruzamientos con carreteras y vías de ferrocarril, ríos, canales y vías de navegación y contra riesgos del suelo y fenómenos naturales como inundaciones, marejadas, desplazamientos del suelo y terremotos, entre otros;

(Segunda Sección)

- f) Puntos de recepción de gas del sistema;
- g) Localización de válvulas de seccionamiento;
- **h)** Instrumentación, válvulas y dispositivos de seguridad de las estaciones de medición y regulación y de las estaciones de regulación;
- i) Ubicación de registros, y
- j) Ubicación de los componentes del sistema de protección catódica tales como: ánodos, rectificadores de corriente, postes para toma de lecturas de potencial entre la tubería y tierra.

5.1.1.1 La UV debe comprobar que las especificaciones de diseño del sistema de distribución cumplen con la NOM, para lo cual verificará que dichas especificaciones cumplen, por lo menos, con los requisitos indicados en la Parte 1.- Normas de referencia de la tabla A. Esta contiene el resumen de los requisitos que deben verificarse para la evaluación de la conformidad con la NOM-003-SECRE-2002. En la Parte 2.- Documentos de consulta de la misma tabla A, están indicadas documentos de reconocida validez y amplia aplicación en la industria del gas, que la UV puede consultar para tener un conocimiento más amplio del tema.

Tabla A.- Resumen de requisitos mínimos de diseño para la evaluación de la conformidad del sistema de distribución de gas

Parte 1 Normas de referencia		Parte 2 Documentos de consulta			
Característica del sistema	NOM-003-SECRE- 2002	Otras normas	CFR 49 DOT 192- 2000	ASME B 31.8-1999	Otros documentos
Requisitos generales	5.1.1 a 5.1.5; 6.1.1 a 6.1.3	NOM-007-SECRE-1999: 7.1 y 7.2	192.55 y 192.103	840.1 a 840.4 y 845.5	AGA Technical Report No. 10
Tubería de acero	5.2.1 a 5.2.3; 6.2.1 a 6.2.7	NMX-B-177-1990	192.5; 192.105 a 192.115; 192.153 a 192.157	831.1 a 831.6; 840.2 a 840.4 y 841.11 a 841.14 y Appendix D	
Tubería de polietileno	5.3.1 a 5.3.3; 6.3.1 a 6.3.3	NMX-E-043-2002	192.121 y 192.123	842.3; 842.31; 842.32 y 842.34 a 842.39	
Tubería de cobre	5.4.1 a 5.4.3; 6.4.1 a 6.4.3	NMX-W-018-1995; NMX-W-101/1-1995 y NMX-W-101/2-1995	192.125	842.61	
Estaciones de regulación y estaciones de regulación y medición	7.1.1 a 7.1.11		192.195; 192.197; 192.199 y 192.201	845.1; 845.21 a 845.24 y 845.31 a 845.36 y 845.41	
Registros	7.3.1 a 7.3.8		192.183 a 192.189	847.1 a 847.4	
Seccionamiento	7.4.1; 7.4.3 y 7.4.4		192.145 y 192.181	831.11 a 831.13; 842.35 y 846.22	
Medidores	7.4.1 a 7.4.10;		192.351 a 192.359	848.1 a 848.4	
Protección contra corrosión en tuberías de acero	8.8; Apéndice II				
Tomas de servicio	9; 9.1 a 9.3; 9.6 a 9.8 y 9.10		192.361 a 192.383	849.11 a 849.13; 849.21; 849.41 y 849.51	

NOTA.- La Parte 2.- Documentos de consulta de la tabla anterior no es de aplicación obligatoria, ni es obligatorio el cumplimiento de sus especificaciones.

B. Materiales y equipos

- **5.1.3** La UV debe confirmar que el distribuidor cuenta con registros que demuestren que los materiales. componentes y equipos comprados para el sistema de distribución de gas cumplen con la NOM. A continuación se presenta una lista, enunciativa pero no limitativa, de equipos, componentes y materiales que deben cumplir con este requisito.
 - a) Dispositivos de relevo de presión;
 - b) Válvulas;
 - Reguladores y medidores de presión; c)
 - d) Medidores de flujo;
 - e) Tubos de cobre y sus conectores;
 - Tubos de acero y sus conectores; f)
 - Tubos de polietileno y sus conectores: g)
 - Tubos de acero con recubrimiento anticorrosivo aplicado en planta: h)
 - Recubrimientos anticorrosivos para aplicar en campo, y i)
 - Fuentes de corriente impresa. j)

5.1.3.1 La UV debe comprobar que las especificaciones de materiales, componentes y equipos comprados para el sistema de distribución cumplen con la NOM, para lo cual verificará que dichas especificaciones cumplen, por lo menos, con los requisitos indicados en la Parte 1.- Normas de referencia de la tabla B. Esta contiene el resumen de los requisitos que deben verificarse para la evaluación de la conformidad con la NOM-003-SECRE-2002. En la Parte 2.- Documentos de consulta de la misma tabla B, están indicados documentos de reconocida validez y amplia aplicación en la industria del gas, que la UV puede consultar para tener un conocimiento más amplio del tema.

Tabla B.- Resumen de requisitos mínimos de los materiales y equipos para la evaluación de la conformidad del sistema de distribución de gas

Parte 1 Normas de referencia		Parte 2 Documentos de consulta			
Materiales y	NOM-003-SECRE-			ASME B 31.8-1999	Otros documentos
Equipos	2002				
Tubos de acero	6.2.1	NMX-B-177-1990	192.65	814.11	API 5L; ASTM A 53; A 106 A 333/A 333M; A 381; A 671; A 672 y A 691
Componentes para tubería de acero	6.2.2		192.143; 192.144 y 192.149	831.31 y 831.32	ASME B 16.9 y MSS SP-75
Válvulas para tubería de acero	6.2.3 a 6.2.5		192.145	831.11 a 831.13	API 6D; ASME B 16.33; B 16.34 y B 16.38
Bridas y accesorios bridados para tubería de acero	6.2.6 y 6.2.7		192.147	831.21	ASME B 16.1 y B 16.5; MSS SP-44
Tubos de polietileno	6.3.1 y 8.9.1.1	NMX-E-043-2002	192.59	814.13 y 814.14	ASTM D 2513
Válvulas y conexiones para tubería de polietileno	6.3.2 y 6.3.3		192.63	842.34 y 842.351	ASTM D 2513; D 3621 y F 1055; ASME B 16.40
Tubos de cobre	6.4.1	NMX-W-018-1995		842.611	ASTM B 837
Conexiones para tubería de cobre	6.4.2	NMX-W-101/1- 1995 y NMX-W- 101/2-1995		842.613	ASTM B 32 y B 813; ASME B 16.18 y B 16.22
Válvulas para tubería de cobre	6.4.3			842.612	
Medidores	7.4.1 a 7.4.3	NOM-014-SCFI- 1997			
Protección contra corrosión en tuberías de acero	8.8; Apéndice II				

NOTA.- La Parte 2.- Documentos de consulta de la tabla anterior no es de aplicación obligatoria, ni es obligatorio el cumplimiento de sus especificaciones.

C. Construcción y pruebas

- **5.1.2** La UV debe verificar que el distribuidor cuenta con procedimientos de construcción adecuados para cumplir con las especificaciones de diseño y lo establecido en el Título de Permiso, para lo cual debe revisar, entre otros, los documentos siguientes:
 - Planos descriptivos, procedimientos y especificaciones para cada uno de los pasos del proceso de construcción;
 - b) Metodología, documentación, instrumentos y equipos para realizar pruebas de hermeticidad;
 - **c)** Certificados de calibración vigentes de los instrumentos, aparatos y equipos de medición utilizados en las pruebas de hermeticidad;
 - d) Procedimiento para la actualización de procedimientos y planos de construcción, y
 - e) Registros de aplicación de los procedimientos de construcción y de pruebas preoperativas realizadas en el sistema de distribución.
- **5.1.2.1** La UV debe elaborar una tabla consignando las especificaciones de la tubería por material, diámetro, longitud y presión de operación. En su caso, la UV debe verificar que el distribuidor cumple con el programa de sustitución de tuberías establecido en el título de permiso respectivo.
- **5.1.2.2** La UV debe comprobar que las especificaciones y procedimientos de construcción y pruebas del sistema de distribución cumplen con la NOM, para lo cual verificará que dichas especificaciones y procedimientos cumplen, por lo menos, con los requisitos indicados en la Parte 1.- Normas de referencia de la tabla C. Esta contiene el resumen de los requisitos que deben verificarse para la evaluación de la conformidad con la NOM-003-SECRE-2002. En la Parte 2.- Documentos de consulta de la misma tabla C, están indicados documentos de reconocida validez y amplia aplicación en la industria del gas, que la UV puede consultar para tener un conocimiento más amplio del tema.

Tabla C.- Resumen de requisitos mínimos del proceso de construcción y pruebas para la evaluación de la conformidad del sistema de distribución de gas

Parte 1 Normas de referencia		Part	e 2 Documentos de co	nsulta
Característica del proceso	NOM-003-SECRE-2002	CFR 49 DOT 192-2000	ASME B 31.8-1999	Otros documentos
Profundidad de tuberías	8.1.1 y 8.1.2	192.301 a 192.311 y 192.317		
Separación de tuberías	8.2	192.325	841.143	
Procedimiento	8.3			
Excavación y rellenado de zanjas	8.4.1 a 8.4.5	192.319; 192.323 y 192.327	841.141 y 841.144	
Reparación de pisos terminados	8.5			
Señalización de tuberías	8.6.1 y 8.6.2			
Instalación de tubería de acero	8.7.1	192.309; 192.317; 192.319; 192.323 y 192.327	841.22; 841.24 y 841.25	
Doblado de tubería de acero	8.7.2 y 8.7.3	192.313 y 192.315	841.23	
Soldadura de tuberías de acero	8.7.4 a 8.7.9	192.221 a 192.235	821 a 825, y Appendix F, G e I	ASME BPV y B 16.25; API 1104
Inspección y pruebas de soldadura	10.2 a 10.5	192.241; 192.243 y 192.245	826; 827	ASME BPV; API 1104
Protección contra corrosión en tuberías de acero	8.8; Apéndice II			

Instalación de tubería de polietileno	8.9.1.1 a 8.9.1.4	192.193; 192.311; 192.321; 192.323; 192.327; 192.375; 192.513 y 192.515	842.35; 842.38 y 842.41 a 842.53	
Uniones en tubería de polietileno	8.9.2.1 a 8.9.2.5; 8.9.3 y 8.9.4	192.281 a 192.287	842.39; 842.391 a 842.396	ASTM D 2513; D 2657; D 3261; F 905 y F 1055
Instalación de tubería de cobre	8.10.1 a 8.10.8		842.61 y 842.62;	ASTM B 828
Tomas de servicio	9.1 a 9.9		849.11 a 849.15; 849.22; 849.42; 849.52; 849.61 y 849.63 a 849.65	
Inspección y pruebas de hermeticidad	10.1 a 10.5; 10.6.1 a 10.6.5	192.503 a 192.517	841.31 a 841.36 y 845.42, y Appendix N	
Estaciones de regulación y estaciones de regulación y medición	7.1.1 a 7.1.11		845.42	
Medidores	7.4.1 y 7.4.11	192.351 a 192.359	848.1 a 848.4	
Puesta en servicio	11		841.4	

NOTA.- La Parte 2.- Documentos de consulta de la tabla anterior no es de aplicación obligatoria, ni es obligatorio el cumplimiento de sus especificaciones.

D. Operación y mantenimiento

- **5.1.3** La UV debe verificar que el distribuidor cuente con procedimientos escritos para que la operación y mantenimiento del sistema de distribución cumplan con la NOM, entre otros, los siguientes:
- **5.1.3.1** En lo que se refiere a la operación los procedimientos deben comprender, al menos, los aspectos siguientes:
 - a) Plano general del sistema que especifique la ubicación exacta actualizada de las estaciones de medición y regulación y los ductos de transporte que alimentan al sistema, así como de los ramales de distribución y válvulas de seccionamiento.
 - **b)** Registro de operadores calificados para la operación y mantenimiento del sistema de distribución de gas.
 - c) Los sistemas de comunicación interna y externa utilizados por el distribuidor para la operación y el mantenimiento del sistema.
 - d) Registro periódico de las condiciones de operación normales tales como: flujo, presión y temperatura del gas, diferenciales de presión en separadores de líquidos o filtros, puntos de ajuste de válvulas reguladoras, niveles y odorización del gas.
 - e) Registro que garantice que los usuarios de la red de distribución reciben el flujo de gas a la presión suficiente para que sus aparatos de consumo funcionen adecuada y eficientemente en el momento de máxima demanda del combustible.
 - f) Registro periódico de la calidad del gas. Para gas natural se debe cumplir con la NOM-001-SECRE-1997.
 - g) Registro sobre las condiciones anormales y situaciones de emergencia que se presentaron durante la jornada y las acciones que se tomaron para resolverlas.
 - h) Registros de paros de emergencia y reducción de la presión de operación en cualquier sección del sistema, necesarias para evitar riesgos al operador o a las instalaciones. Se deben incluir las sesiones de mantenimiento que requieren sacar de servicio algún ramal o parte de la red de distribución de gas.
 - i) Programa de actividades no rutinarias y reparaciones que deberán ser atendidas en el turno siguiente y registro del personal participante en cada turno en el que se describan las actividades desarrolladas, la duración de los trabajos y los resultados obtenidos.

- **5.1.3.2** La UV debe verificar que el distribuidor tenga un programa de mantenimiento documentado en el que se especifiquen las actividades a efectuarse en el sistema durante el año calendario correspondiente. Este documento debe comprender, al menos, el control de las aspectos siguientes:
 - a) Inspección periódica e informe sobre situaciones detectadas que puedan afectar la seguridad del sistema, y que es necesario analizarlas para determinar acciones para restablecer las condiciones que cumplan con los requisitos de la NOM, por ejemplo: asentamientos humanos, construcciones o excavaciones que invadan la franja de desarrollo del sistema o que restrinjan los accesos a válvulas de seccionamiento y estaciones de medición y regulación, cambios en la topografía que arriesguen el sistema, daños a instrumentos, equipos, construcciones y señalamientos.
 - **b)** Programa de monitoreo, detección y clasificación de fugas, así como registros de las acciones determinadas con base en los resultados de dichas actividades.
 - c) Programa de inspección, pruebas y análisis de resultados para determinar el programa de mantenimiento, reparación y sustitución de tuberías; válvulas de seccionamiento, bloqueo, reguladoras de presión, dispositivos de seguridad, medidores, e instrumentos.
 - **d)** Programa de inspección, mantenimiento, reparación, calibración y reposición de reguladores y medidores;
 - e) Programa de inspección y mantenimiento de casetas y registros que resguarden válvulas, equipos y estaciones de regulación y de regulación y medición.
 - **f)** Programa de verificación de la operación del sistema de protección catódica, incluyendo registros de lecturas de potenciales tubo-suelo y gráficas de tendencia.
 - g) Programa de mantenimiento, reparación y sustitución de rectificadores de corriente y ánodos de sacrificio con base en los resultados del programa indicado en el párrafo anterior.
 - **h)** Programa de mantenimiento y reparación de recubrimientos anticorrosivos determinado con base a los resultados de la inspección y pruebas periódicas de los mismos.
 - i) En caso de que el sistema contenga estaciones de compresión, registro de resultados de la inspección y pruebas realizados a los dispositivos de paro a control remoto, y en el programa de mantenimiento y reparación determinado con base en dichos resultados.
 - **5.1.3.3** La UV debe verificar que el distribuidor dispone de los procedimientos escritos siguientes:
 - a) Vigilancia de la franja de desarrollo del sistema para actualizar el análisis de riesgos y las clases de localización.
 - b) Para la atención de quejas, reportes y emergencias, deben incluir la siguiente información:
 - i. Oficinas y/o números telefónicos específicos.
 - **ii.** Registro de llamadas de emergencia recibidas que especifique el tiempo de respuesta dado a cada una de las llamadas.
 - iii. Los registros históricos de este servicio.
- **5.1.3.4** La UV debe comprobar que las especificaciones y procedimientos de operación y mantenimiento del sistema de distribución cumplen con la NOM, para lo cual verificará que dichas especificaciones y procedimientos cumplen, por lo menos, con los requisitos indicados en la Parte 1.- Normas de referencia de la tabla D. Esta contiene el resumen de los requisitos que deben verificarse para la evaluación de la conformidad con la NOM-003-SECRE-2002. En la Parte 2.- Documentos de consulta de la misma tabla D, están indicados documentos de reconocida validez y amplia aplicación en la industria del gas, que la UV puede consultar para tener un conocimiento más amplio del tema.

Tabla D.- Resumen de requisitos mínimos de operación y mantenimiento para la evaluación de la conformidad del sistema de distribución de gas

Parte 1 Normas de referencia		Parte 2 Docum	entos de consulta	
Característica del sistema	NOM-003-SECRE-2002	Otras normas	CFR 49 DOT-192 2000	ASME B 31.8-1999
Procedimientos de operación y mantenimiento	12.1		192.605	850.1 a 850.3
Calidad del gas natural	12.2	NOM-001-SECRE-1997:	192.605	
Odorización del gas natural	12.3; Apéndice I		192.625	871 y 872.41
Sistema de telecomunicación	12.4			
Prevención de accidentes	12.5.1 y 12.5.2		192.627; 192.629 y 192.751	841.26; 841.27; 842.46; 842.47 y 853.45
Suspensión del servicio	12.6 a 12.7			
Interrupción de trabajos de mantenimiento	12.8			
Servicio de Emergencia	12.9; 12.9.1 y 12.9.2			850.4
Monitoreo para la detección de fugas	12.9; Apéndice III		192.605; 192.721 a 192.725	852.1 a 852.3; 852.5; 852.6 y Appendix M
Mantenimiento de reguladores de presión	12.11			
Mantenimiento de estaciones de regulación y de estaciones de regulación y medición	12.12		192.605; 192.739; 192.741 y 192.743	853.3
Mantenimiento de registros y válvulas de seccionamiento	12.13		192.605; 192.747 y 192.749	853.42 a 853.45 y 853.5
Desactivación de tuberías	12.14		192.727	852.4
Reclasificación de tuberías por aumento de presión.	12.15.1 y 12.15.2		192.551 a 557; 192.611 y 192.619	845.61 a 845.64
Reclasificación de tuberías por clase de localización	12.15.1 y 12.15.3		192.609; 192.611; 192.613 y 192.619	840.2 a 840.4; 852.1 a 852.3; 854.1 a 854.4
Señalización	8.6.1 y 8.6.2		192.707	851.7
Protección contra corrosión en tuberías de acero	8.8; Apéndice II			

NOTA.- La Parte 2.- Documentos de consulta de la tabla anterior no es de aplicación obligatoria, ni es obligatorio el cumplimiento de sus especificaciones.

E. Seguridad

5.1.4 La UV debe verificar que el distribuidor cuenta con un plan integral de seguridad y protección civil, y en su caso, los registros de aplicación de dicho plan. Este plan debe cumplir con la NOM y considerar al menos los aspectos que se listan a continuación:

- a) Programas y procedimientos escritos para prevención de accidentes en las instalaciones del sistema.
- b) Programas y procedimientos para informar y educar en materia de gas a usuarios y público en general.

- c) Programa de difusión del Plan Integral de Seguridad y Protección Civil al personal operativo y autoridades competentes, entre otros: representantes de Protección Civil, bomberos y policía de la ciudad o municipio donde se ubique el sistema.
- d) Brigadas de seguridad integradas por personal del distribuidor, y en su caso, la existencia de un procedimiento para la coordinación con las autoridades externas.
- e) Procedimiento para atención de emergencias las 24 horas del día, durante los 365 días del año, de manera ininterrumpida.
- f) Equipo necesario para controlar contingencias.
- g) Programa de capacitación para la prevención y atención de emergencias y las constancias de que los simulacros operacionales y de emergencias se efectuaron de acuerdo a programa.
- h) Programas de inspección y mantenimiento del equipo contra incendio;
- i) Programas sobre la capacitación y entrenamiento del personal sobre prevención de daños y combate contra incendios;
- j) Historial de fugas e incidentes;

5.1.4.1 La UV debe comprobar que las especificaciones y procedimientos de seguridad del sistema de distribución cumplen con la NOM, para lo cual verificará que dichas especificaciones y procedimientos cumplen, por lo menos, con los requisitos indicados en la Parte 1.- Normas de referencia de la tabla F. Esta contiene el resumen de los requisitos que deben verificarse para la evaluación de la conformidad con la NOM-003-SECRE-2002. En la Parte 2.- Documentos de consulta de la misma tabla F, están indicados documentos de reconocida validez y amplia aplicación en la industria del gas, que la UV puede consultar para tener un conocimiento más amplio del tema.

Tabla F.- Resumen de requisitos mínimos de seguridad para la evaluación de la conformidad del sistema de distribución de gas natural

Parte 1 Normas	s de referencia	Parte 2 Documentos de consulta		nsulta
Característica del sistema	NOM-003-SECRE-2002	Otras normas	CFR 49 DOT 192-2000	ASME B 31.8-99
Programa de prevención de accidentes	13.2.1	NOM-007-SECRE-1999, 12.2 y 12.6	192.613; 192.614; 192.616; 192.625; 192.627; 192.629 y 192.751	841.26; 841.27; 842.46; 842.47; 850.6 y 850.7
Programa de auxilio	13.3.1	NOM-007-SECRE-1999, 12.4 y Apéndice C	192.615; 192.801 a 192.809	850.41 a 850.44
Programa de recuperación	13.4.1	NOM-007-SECRE-1999, 12.5 y 12.7	192.617;	850.5
Protección contra corrosión en tuberías de acero	8.8; Apéndice II			
Programa de gestión de la integridad del sistema	13.2.1 inciso c)			

NOTA.- La Parte 2.- Documentos de consulta de la tabla anterior no es de aplicación obligatoria, ni es obligatorio el cumplimiento de sus especificaciones.

5.2 Verificación en campo

El objetivo de la verificación en campo es que la UV compruebe que las especificaciones y criterios establecidos en los documentos examinados de conformidad con el inciso 5.1 Revisión de la información documental se aplican en la construcción, arranque, operación y mantenimiento del sistema de distribución de gas, para lo cual, una vez que termine la revisión documental, la UV debe inspeccionar las instalaciones del sistema. La UV debe establecer un plan específico para realizar la inspección del sistema, el cual debe considerar, pero no limitarse a, la verificación de los puntos siguientes:

- a) Durante el proceso de construcción del sistema, debe verificar el personal responsable de efectuar la construcción del sistema de distribución de gas tiene la calificación y capacitación requerida sobre los procedimientos de construcción para que dichos procedimientos sean aplicados correctamente.
- **b)** Los soldadores están calificados conforme con el procedimiento empleado y que cuentan con la certificación correspondiente.
- c) Las obras efectuadas corresponden con el programa de construcción y cumplen con las especificaciones de diseño del sistema.

- d) Los materiales y accesorios empleados en las tuberías de líneas principales y ramales del sistema de distribución de gas, estaciones de regulación y medición y estaciones de entrega de gas al sistema.
- e) La UV debe verificar el cumplimiento del programa detallado de construcción y pruebas, correspondiente a cada una de las etapas del proyecto.
- f) Los procedimientos de construcción son aplicados correctamente, entre otros: la profundidad de zanjas, instalación de tubería de acero, instalación de tubería de polietileno, tomas de servicio, señalización, inspección de soldaduras, compactación, cama de arena, tipo de relleno utilizado, cinta de polietileno de advertencia, cable guía.
- g) La ubicación de las válvulas críticas del sistema, tales como: reguladoras, seccionamiento, de seguridad, es la que se encuentra en los planos respectivos.
- h) Las especificaciones de las válvulas críticas del sistema tales como: reguladoras, seccionamiento, de seguridad, cumplen con lo establecido en los certificados de calidad.
- i) La implantación del sistema de protección catódica es correcta, entre otros se deben verificar los ánodos de sacrificio o corriente impresa, postes de medición de potencial y de los aisladores en válvulas de seccionamiento y acometidas.
- j) Las pruebas se realizan de acuerdo con las condiciones especificadas en el procedimiento respectivo. Los resultados obtenidos serán documentados y firmados por el representante de la UV, el contratista y el inspector de campo del distribuidor.
- k) Los equipos utilizados para la medición del gas corresponden con las especificaciones de los manuales del fabricante.
- I) Revisar la bitácora de supervisión, operación y mantenimiento.
- **m)** Comprobar que el sistema de dosificación del odorizante, se encuentre funcionando con la frecuencia comprometida y que cumple con la NOM.
- n) Verificar en diferentes sectores del sistema que las presiones y flujos de gas corresponden con los compromisos de suministro convenidos con los usuarios. Comprobarlo con la visita a usuarios del lugar.
- o) Los señalamientos y letreros del derecho de vía de los ductos del sistema de distribución de gas.
- p) Verificar que las estaciones de medición y regulación y estaciones de entrega de gas al sistema se encuentran debidamente protegidos del exterior, con letreros y señalamientos de advertencia, el equipo de seguridad requerido y la ubicación apropiada de extintores y el control de acceso a dichas instalaciones.
- **q)** La UV debe corroborar la difusión y correcta implantación del Plan Integral de Seguridad y Protección Civil.
- r) Verificar que las pruebas se realicen de acuerdo con las condiciones especificadas en el procedimiento respectivo. Los resultados obtenidos serán documentados y firmados por el representante de la UV, el contratista y el inspector de campo del distribuidor.

6. Odorización del gas natural

La UV debe realizar la revisión de información documental y la verificación en campo de los aspectos siguientes:

- A. Características y concentración del odorizante
- B. Equipo y control de odorización
- **C.** Seguridad
- 6.1 Revisión de información documental

La UV debe verificar que el sistema de odorización cuenta con documentación completa que asegure que su diseño, construcción, operación y mantenimiento cumplen con los requisitos de la NOM. Asimismo, la UV debe verificar que las características del odorizante y su dosificación en el flujo de gas son adecuadas para cumplir con los requisitos de la NOM. Para llevarla a cabo la UV debe revisar, al menos, los documentos siguientes:

- a) Registro de la calidad de los odorizantes inyectados al sistema que demuestren que dichos odorizantes cumplen con los requisitos especificados en el inciso 3 del Apéndice I de esta NOM.
- b) Planos descriptivos y diagrama de flujo del sistema de distribución de gas donde se indiquen la ubicación de los puntos de inyección de odorizante y la dosificación de odorizante en cada uno de ellos.
- c) Registro que demuestre que los equipos de odorización utilizados en el sistema de distribución cumplen con los requisitos estipulados en el inciso 5 del Apéndice I de esta NOM.
- d) Procedimientos de operación de los equipos de odorización del sistema de distribución.
- e) Registros del control de proceso de odorización por consumo de odorizante o por análisis del contenido de odorizante en el gas natural.
- f) Procedimientos de monitoreo del gas odorizado en el sistema de acuerdo con el inciso 6 del Apéndice I de esta NOM y registro de los resultados que demuestren que el gas odorizado cumple con los requisitos estipulados en el inciso 4 del Apéndice I de esta NOM, en todos los puntos del sistema de distribución.
- g) Procedimientos que indiquen las causas posibles de deficiencias de odorización del gas y acciones que se deben aplicar para corregirlas. Registro de los resultados obtenidos de su aplicación.

A. Características y concentración del odorizante

6.1.1 La UV debe comprobar que las características y concentración del odorizante en el sistema de distribución cumplen con la NOM, para lo cual debe verificar que dichas características y concentración cumplen, por lo menos, con las especificaciones indicadas en la Parte 1.- Normas de referencia de la Tabla A. Esta contiene el resumen de los requisitos que deben verificarse para la evaluación de la conformidad con la NOM-003-SECRE-2002. En la Parte 2.- Documentos de consulta de la misma tabla A están indicados documentos de reconocida validez y amplia aplicación en la industria del gas natural, que la UV puede consultar para tener un conocimiento más amplio del tema.

Tabla A.- Resumen de requisitos mínimos para la evaluación de la conformidad del odorizante del gas natural

Parte 1 Normas de referencia		Parte 2 Documentos de consulta		
Características del odorizante	NOM-003-SECRE-2002, Apéndice I	CFR 49 DOT 192- 2000	ASME B 31.8-99	Otros documentos
Requisitos del odorizante	Inciso 3	192.625	871	SEDIGAS RS-T-01, inciso 3.1
Concentración del odorizante	Inciso 4	192.625	871	SEDIGAS RS-T-01, inciso 2.3
Determinación de mercaptanos				ASTM D 1988

NOTA.- La Parte 2.- Documentos de referencia de la tabla anterior, no es de aplicación obligatoria ni es obligatorio el cumplimiento de sus especificaciones.

B. Equipo y control de odorización

6.1.2 La UV debe verificar que el equipo de odorización cumple con los requisitos del inciso 5 del Apéndice I de esta NOM. Para esto la UV debe revisar las especificaciones del equipo entregadas por el fabricante y los registros de cumplimiento con las normas aplicables. Como constancia la UV debe registrar los datos siguientes

Especificaciones del equipo de odorización

Especificación	Máximo	Mínimo
Flujo de gas a odorizar		
Rango de flujo del equipo		
Precisión del equipo		

Asimismo, la UV debe especificar la clase del equipo de odorización de acuerdo con la clasificación siguiente:

- a) Sistemas de vaporización:
 - i) por efecto mecha
 - ii) por saturación de caudal parcial.

- b) Sistemas de inyección líquida:
 - i) Por goteo
 - ii) Por bomba dosificadora.

C. Seguridad

- **6.1.3** La UV debe verificar que en el manual de procedimientos del sistema de distribución de gas, están considerados los instructivos de seguridad relacionados con el sistema de odorización de acuerdo con los requisitos del inciso 7 del Apéndice I de esta NOM.
- **6.1.3.1** La UV debe comprobar en los certificados o registros, en su caso, que las herramientas para trabajar en los equipos de odorización, son a prueba de chispa, para verificar el cumplimiento del inciso 7.1 a) del Apéndice I de la NOM.
- **6.1.3.2** La UV debe corroborar que los equipos de odorización y los componentes utilizados en los sistemas de odorización cumplan con los requisitos del inciso 7.1 b) del Apéndice I de la NOM.
- **6.1.3.3** La UV debe comprobar en los certificados o registros, en su caso, que los equipos de seguridad personal cumplen con los requisitos establecidos en el inciso 7.4 del Apéndice I de la NOM.
 - 6.2 Verificación en campo

La UV debe comprobar que las especificaciones y criterios establecidos en los documentos examinados de conformidad con el inciso 6.1 Revisión de la información documental de este PEC, se aplican en el diseño, construcción, operación y mantenimiento del sistema de odorización, para lo cual, una vez que termine la revisión documental, la UV debe identificar el estado que guardan las instalaciones del sistema con el fin de efectuar las inspecciones que se indican a continuación.

6.2.1 La UV debe verificar que el sistema cumple con los requisitos del inciso 4 del Apéndice I de esta NOM, especialmente en los puntos más alejados de los puntos de inyección de odorizante.

7. Control de la corrosión externa en tuberías de acero enterradas y/o sumergidas

La UV debe realizar la revisión de información documental y la verificación en campo del sistema de control de la corrosión externa de los aspectos siguientes:

- A. Diseño
- B. Materiales y equipos
- C. Construcción y pruebas
- D. Operación y mantenimiento
- E. Seguridad
- 7.1 Revisión de información documental

La UV debe verificar que el sistema de control de la corrosión externa cuenta con documentación completa que asegure que su diseño y construcción, materiales y equipo, así como su operación, mantenimiento y seguridad cumplen con los requisitos de la NOM. Para tales efectos, la UV debe recabar y revisar la información siguiente:

- a) Título de permiso y sus anexos;
- La información del sistema según se especifica en los incisos 3.12.1 y 3.12.2 del Apéndice II de esta NOM
- c) Los registros para el control de la corrosión de acuerdo con los incisos 3.13 y 3.13.1 a 3.13.4 del Apéndice II de esta NOM.
- A. Diseño
- **7.1.1** Para las tuberías nuevas la UV debe verificar que el dictamen a que se refieren los incisos 3.2.1 y 3.2.2 del Apéndice II de esta NOM esté avalado por un técnico especialista reconocido, y que dicho dictamen esté basado sobre estudios detallados del medio que rodea a la tubería, realizados por un técnico especializado, en los cuales, se debe considerar al menos los aspectos siguientes:
 - a) Determinación de la naturaleza del suelo. La UV debe verificar que el estudio comprenda la determinación de la resistividad del suelo conforme con el inciso 3.8.2 del Apéndice II de esta NOM. El PH y la composición del suelo son, asimismo, propiedades importantes para definir su naturaleza.

- b) Riesgos específicos de la zona.- La UV debe verificar que el estudio considere los cambios posibles de las condiciones del suelo a consecuencia de la irrigación, derrames de sustancias corrosivas, contaminación y cambios del contenido de humedad en el suelo derivados de las diferentes estaciones en el año y condiciones meteorológicas tales como lluvias intensas y tormentas eléctricas.
- c) Experiencia.- La UV debe verificar si el estudio estima la corrosividad probable haciendo referencia a la experiencia real de corrosión en estructuras metálicas similares, así como a la historia de tuberías similares en la que son de gran utilidad los histogramas tiempo-frecuencia acumulada de ocurrencia de fugas por corrosión.
- d) Agentes externos.- La UV debe verificar que el estudio considera la proximidad de agentes externos con el fin de disponer de las protecciones adecuadas para minimizar sus efectos posibles sobre el sistema de tuberías, entre ellas, sin ser limitativo, están las corrientes parásitas derivadas de vías férreas electrificadas, líneas de transmisión y subestaciones eléctricas, protecciones catódicas ajenas, aterrizamientos de motores, controles y sistemas eléctricos, etc.
- **7.1.1.1** Diseño del sistema.- En caso de que sea necesario instalar un sistema de control de la corrosión externa, la UV debe verificar que su diseño esté avalado por un técnico especialista. La verificación del sistema comprende los recubrimientos y la protección catódica de la tubería, los cuales deben ser inspeccionados y probados como se indica a continuación.
- **7.1.1.2** Protección catódica.- La UV debe identificar los diferentes tipos de protección catódica en el sistema y verificar que su diseño cumpla con lo establecido por el inciso 3.3 del Apéndice II de esta NOM. Para llevar a cabo la verificación la UV debe separar los tramos de tubería por tipo de protección, los cuales se deben registrar en el formato siguiente:

Tubería con protección catódica

Tipo de protección	Diámetro, mm	Longitud, m	Superficie, m ²
Anodos galvánicos			
Corriente impresa			
	Total		

- **7.1.1.3** La UV debe verificar que la continuidad eléctrica esté asegurada en las uniones no soldadas de la tubería.
- **7.1.1.4** La UV debe verificar la ubicación y especificaciones de los aislamientos eléctricos que separan los tramos.
- **7.1.1.5** La UV debe verificar la ubicación y especificaciones de los puenteos eléctricos con otras tuberías y estructuras de acero.
- **7.1.1.6** Protección por ánodos galvánicos o de sacrificio.- La UV debe verificar el procedimiento aplicado para diseñar el sistema de protección catódica y que los ánodos galvánicos cumplen con los requisitos del inciso 3.3.1 del Apéndice II de esta NOM. La UV debe registrar sus especificaciones en el formato siguiente:

Especificaciones de las camas de ánodos galvánicos

Ubicación de la cama de ánodos		
Característica	Especificación	
Cantidad de los ánodos		
Tipo		
Peso		
Profundidad		
Relleno		

7.1.1.7 Protección por corriente impresa.- La UV debe verificar que las fuentes de corriente impresa cumplen con los requisitos del inciso 3.3.2 del Apéndice II de esta NOM y sus especificaciones se deben registrar en el formato siguiente:

Especificaciones de las fuentes de corriente impresa

Ubicación		
Descripción		
Característica Especificación		
Tipo de regulación	Automática o manual	
Configuración	Modular o unidad	
Alimentación	Monofásico o trifásico	
Tensión de alimentación		

Especificaciones de las camas de ánodos inertes

Ubicación de la cama de ánodos			
Característica	Especificación		
Cantidad de los ánodos			
Tipo			
Peso			
Profundidad			
Relleno			

7.1.1.8 Estaciones de prueba de control de la corrosión.- La UV debe verificar que el sistema cumple con los requisitos del inciso 3.9.1 del Apéndice II de esta NOM.

7.1.1.9 La UV debe comprobar que las especificaciones de diseño del sistema de control de la corrosión externa cumplen con la NOM, para lo cual debe verificar que dichas especificaciones cumplen, por lo menos, con los requisitos indicados en la Parte 1.- Normas de referencia de la tabla A. Esta contiene el resumen de los requisitos que deben verificarse para la evaluación de la conformidad con la NOM-003-SECRE-2002. En la Parte 2.- Documentos de consulta de la misma tabla A están indicados documentos de reconocida validez y amplia aplicación en la industria del gas natural, que la UV puede consultar para tener un conocimiento más amplio del tema.

Tabla A.- Resumen de requisitos mínimos de diseño para la evaluación de la conformidad del sistema de control de la corrosión externa

Parte 1 Normas de referencia		Parte 2 Documentos de consulta		
Característica del sistema	NOM-003-SECRE-2002; Apéndice II	NACE RP 0169-1996	CFR 49 DOT 192-2000	ASME B 31.8-99
Requisitos generales	3	Sección 3	192.451; 192.453	861; 862.111
Recubrimientos	3.1	Secciones 4 y 5	192.461	862.112
Tuberías nuevas	3.2.1	Secciones 6 y 7	192.455	862.1
Tuberías existentes	3.2.2	Secciones 6 y 7	192.455; 192.457	862.2
Anodos de sacrificio	3.3.1	7.4.1	192.463	862.113
Corriente impresa	3.3.2	7.4.2	192.463	862.113
Puenteos eléctricos	3.2.3			
Separación entre tuberías	3.9.3	4.3.10 y 4.3.11		862.117; 862.218
Aislamiento eléctrico	3.4; 3.4.1	4.3	192.467	862.114
Estaciones para medición de potencial	3.9.1	4.5	192.469; 192.471	862.115
Protección contra interferencias	3.9.2	Sección 9	192.473	862.116; 862.215; 862.224

NOTA.- La Parte 2.- Documentos de consulta de la tabla anterior no es de aplicación obligatoria ni es obligatorio el cumplimiento de sus especificaciones.

B. Materiales, componentes y equipos

- **7.1.2** La UV debe verificar que los materiales, componentes y equipos utilizados en el sistema de control de la corrosión externa, cuentan con certificados o registros, en su caso, de cumplimiento con las normas aplicables. De manera enunciativa mas no limitativa, se deben verificar los componentes siguientes:
- **7.1.2.1** Tubos con recubrimiento aplicado en planta.- La UV debe verificar que los tubos con recubrimiento aplicado en planta cuentan con certificados o registros, en su caso, de cumplimiento con las normas aplicables. La UV debe recabar y registrar al menos la información requerida en el formato siguiente:

Especificaciones de los recubrimientos aplicados en planta

Propiedad	Método de prueba	Requisito
Material		
Resistividad		Alta
Absorción de agua		Ваја
Permeabilidad al vapor de agua		Muy baja
Permeabilidad al oxígeno		
Resistencia a los agentes atmosféricos		Buena
Adherencia al metal		Buena en un rango amplio de temperaturas
Resistencia a los esfuerzos mecánicos, abrasión, impacto, penetración, etc.		
Resistencia a la radiación ultravioleta		Buena
Espesor		Adecuado y uniforme
Defectos		No debe tener

- **7.1.2.2** Recubrimientos para aplicar en campo.- La UV debe verificar que los recubrimientos para aplicar en campo cuentan con certificados o registros, en su caso, de cumplimiento con las normas aplicables. Asimismo, la UV debe verificar que dichos recubrimientos sean compatibles con los demás recubrimientos utilizados, que exista un método especificado por el proveedor para su aplicación, y que las características de calidad del recubrimiento una vez aplicado, estén garantizadas por la norma aplicable. Los recubrimientos pueden ser aplicados en campo como líquidos o semilíquidos, o como cintas, manguitos cerrados o abiertos. Asimismo, se deben identificar los que son para capa primaria, para capas intermedias y para capas de acabado.
 - a) La UV debe verificar que esté especificado el procedimiento para la preparación de las superficies desnudas e intermedias para la aplicación de recubrimientos para capa primaria.
 - **b)** La UV debe especificar la marca comercial registrada y las normas aplicadas para los certificados o registros, en su caso, de los recubrimientos utilizados para aplicar en campo, en el formato siguiente:

Registro de los recubrimientos para aplicar en campo

Recubrimiento	Marca registrada	Certificado o registro de las normas que cumple
Capa primaria		
Capas intermedias		
Capas de acabado		
Cintas		
Manguitos cerrados		
Manguitos abiertos		

c) La UV debe registrar las especificaciones garantizadas por el certificado o registro, en su caso, de los recubrimientos utilizados para aplicar en campo de acuerdo con el formato siguiente:

Requisitos de los recubrimientos para aplicar en campo

Propiedad	Método de prueba	Requisito
Resistividad		Alta
Compatibilidad		Muy buena
Adherencia al metal		Muy buena
Resistencia a la intemperie		Muy buena
Resistencia a la humedad		Muy buena
Resistencia a la niebla salina		Muy buena
Resistencia al repintado		Muy buena
Resistencia a la abrasión, impacto, penetración, etc.		Buena en un rango amplio de temperaturas
Protección catódica debida a aditivos a base de Aluminio, Magnesio y Zinc		Buena

7.1.2.3 La UV debe comprobar que las especificaciones de los materiales, componentes y equipos utilizados en el sistema de control de la corrosión externa cumplen con la NOM, para lo cual debe verificar que dichas especificaciones cumplen, por lo menos, con los requisitos indicados en la Parte 1.- Normas de referencia de la tabla B. Esta contiene el resumen de los requisitos que deben verificarse para la evaluación de la conformidad con la NOM-003-SECRE-2002. En la Parte 2.- Documentos de consulta de la misma tabla B están indicados documentos de reconocida validez y amplia aplicación en la industria del gas natural, que la UV puede consultar para tener un conocimiento más amplio del tema.

Tabla B.- Resumen de requisitos mínimos de los materiales, componentes y equipos para la evaluación de la conformidad del sistema de control de la corrosión externa

Parte 1 Normas de referencia		Parte 2 Documentos de consulta		
Materiales y Equipos	NOM-003-SECRE-2002, Apéndice II	NACE RP 0169-1996	CFR 49 DOT 192-2000	ASME B 31.8-99
Tubos recubiertos		Sección 5		
Recubrimientos para aplicar en campo	3.1	Sección 5	192.461	862.112
Anodos galvánicos		Sección 7		
Fuentes de corriente impresa		Sección 7		
Conexiones eléctricas		4.4		
Aislantes eléctricos	3.4.1	4.3.6		

NOTA.- La Parte 2.- Documentos de consulta de la tabla anterior no es de aplicación obligatoria, ni es obligatorio el cumplimiento de sus especificaciones.

C. Construcción y pruebas

7.1.3 La UV debe comprobar que los procedimientos de construcción y pruebas del sistema de control de la corrosión externa cumplen con la NOM, para lo cual debe verificar que dichos procedimientos cumplen, por lo menos, con los requisitos indicados en la Parte 1.- Normas de referencia de la tabla C. Esta contiene el resumen de los requisitos que deben verificarse para la evaluación de la conformidad con la NOM-003-SECRE-2002. En la Parte 2.- Documentos de consulta de la misma tabla C están indicados documentos de reconocida validez y amplia aplicación en la industria del gas natural, que la UV puede consultar para tener un conocimiento más amplio del tema

Tabla C.- Resumen de requisitos mínimos de los procedimientos de construcción y pruebas para la evaluación de la conformidad del sistema de control de la corrosión externa

Parte 1 Normas de referencia			Parte 2 Documentos de consulta			
Materiales y Equipos	NOM-003-SECRE-2002, Apéndice II	NACE RP 0169-1996	CFR 49 DOT 192-2000	ASME B 31.8-99	Otros documentos	
Procedimientos para instalación	3.1; 3.1.1 a 3.1.3	Sección 8		841.222; 841.252; 841.253; 862.112		
Criterios de protección catódica	3.5	Sección 6	192.455; 192.463 y Appendix D	Appendix K		
Perfil de potenciales de polarización	3.6		192.455; 192.463 y Appendix D	Appendix K		
Máximo potencial tubo / suelo	3.7		192.455; 192.463 y Appendix D	Appendix K		
Mediciones eléctricas	3.8; 3.8.1; 3.8.2; 3.8.3		192.455; 192.463 y Appendix D	Appendix K	NACE-TM-0497-1997	
Funcionalidad del sistema y plazo para su instalación	3.9		192.455; 192.463 y Appendix D	Appendix K		
Evaluación de interferencia e interacción con otros sistemas	3.9.2; 3.9.3; 3.12.2	Sección 9	192.473	862.114; 862.116		
Corrección de daños en recubrimientos	3.9.4		192.487			

NOTA.- La Parte 2.- Documentos de consulta de la tabla anterior no es de aplicación obligatoria ni es obligatorio el cumplimiento de sus especificaciones.

D. Operación y mantenimiento

- **7.1.4** Debe haber procedimientos y registros para la realización de las siguientes actividades requeridas para el buen funcionamiento del sistema de protección catódica:
 - a) Inspección, manejo, almacenamiento e instalación de ánodos galvánicos.
 - b) Inspección y manejo de las fuentes de corriente impresa.
 - c) Inspección, manejo, almacenamiento e instalación de ánodos inertes.
 - d) Mantenimiento preventivo de las camas de ánodos galvánicos y de ánodos inertes.
 - e) Pruebas de rutina para verificar el comportamiento e integrar el expediente de funcionalidad del sistema, conforme con el inciso 3.9 del Apéndice II de esta NOM.
 - f) Mediciones de resistividad del suelo, potencial tubo / suelo y corrientes eléctricas conforme con los incisos 3.8 y 3.8.1 a 3.8.3 del Apéndice II de esta NOM.
 - g) Verificación del funcionamiento de los electrodos de referencia conforme con el inciso 3.8.1 del Apéndice II de esta NOM.
- **7.1.4.1** La UV debe comprobar que los procedimientos de operación y mantenimiento del sistema de control de la corrosión externa cumplen con la NOM, para lo cual debe verificar que dichos procedimientos cumplen, por lo menos, con los requisitos indicados en la Parte 1.- Normas de referencia de la tabla D. Esta contiene el resumen de los requisitos que deben verificarse para la evaluación de la conformidad con la NOM-003-SECRE-2002. En la Parte 2.- Documentos de consulta de la misma tabla D están indicados documentos de reconocida validez y amplia aplicación en la industria del gas natural, que la UV puede consultar para tener un conocimiento más amplio del tema.

Tabla D.- Resumen de requisitos mínimos de los procedimientos de operación y mantenimiento para la evaluación de la conformidad del sistema de control de la corrosión externa

Parte 1 Normas de referencia		Pa	Parte 2 Documentos de consulta		
Característica del sistema	NOM-003-SECRE-2002, Apéndice II	NACE RP 0169-1996	CFR 49 DOT 192-2000	ASME B 31.8-99	
Fuentes de energía eléctrica	3.10.1	Secciones 10 y 11	192.465	862.116	
Camas anódicas	3.10.2		192.463 y Appendix D	Appendix K	
Conexiones eléctricas	3.10.3		192.465	862.115	
Aislamientos eléctricos	3.10.4		192.467	862.114	
Potenciales tubo / suelo	3.10.6		192.463 y Appendix D	Appendix K	
Recubrimientos	3.10.5		192.461	862.112	
Documentación del sistema	3.12.1		192.491		
Registros documentales	3.13; 3.13.1 a 3.13.4		192.491	867	

NOTA.- La Parte 2.- Documentos de consulta de la tabla anterior no es de aplicación obligatoria ni es obligatorio el cumplimiento de sus especificaciones.

E. Seguridad

7.1.5 La UV debe comprobar que los procedimientos de seguridad del sistema de control de la corrosión externa cumplen con la NOM, para lo cual debe verificar que dichos procedimientos cumplen, por lo menos, con los requisitos indicados en la Parte 1.- Normas de referencia de la tabla E. Esta contiene el resumen de los requisitos que deben verificarse para la evaluación de la conformidad con la NOM-003-SECRE-2002. En la Parte 2.- Documentos de consulta de la misma tabla E están indicados documentos de reconocida validez y amplia aplicación en la industria del gas natural, que la UV puede consultar para tener un conocimiento más amplio del tema

Tabla E.- Resumen de requisitos mínimos de los procedimientos de seguridad para la evaluación de la conformidad del sistema de control de la corrosión externa

Parte 1 Normas de referencia			Parte 2	Documentos de	consulta
Característica de seguridad	NOM-003- SECRE-2002, Apéndice II	Otras normas	NACE RP 0169-1996	CFR 49 DOT 192-2000	ASME B 31.8-99
Del personal	3.11				
Contra descargas y arcos eléctricos	3.11.1, 3.11.4.1				
Contra acumulación de gases	3.11.2				
De la instalación eléctrica	3.11.3	NOM-001-SEDE			
Del equipo eléctrico	3.11.4.2	NOM-001-SEDE			
Contra corto circuito	3.11.4				
De las pruebas eléctricas	3.11.4.3				
Señalización de instalaciones eléctricas	3.11.5	NOM-001-SEDE			

NOTA.- La Parte 2.- Documentos de consulta de la tabla anterior no es de aplicación obligatoria ni es obligatorio el cumplimiento de sus especificaciones.

7.2 Verificación en campo

La UV debe verificar en campo que las especificaciones y criterios establecidos en los documentos examinados en conformidad con el inciso 7.1 Revisión de información documental se aplican en la construcción, arranque, operación y mantenimiento del sistema, para lo cual, una vez que termine la revisión documental, la UV debe identificar el estado que guardan las instalaciones del sistema con el fin de efectuar las inspecciones y pruebas que se listan a continuación:

- **7.2.1**La UV debe verificar que en el proceso de construcción del sistema se cumplen las condiciones siguientes:
 - a) Los procedimientos del manual de instalación del sistema, deben ser aplicados por el personal encargado de realizar la instalación del sistema.
 - b) El avance de obra debe ser congruente con el programa de construcción. La UV debe informar en el dictamen el grado de avance en cada visita que realiza a las instalaciones.
 - c) La UV debe verificar en los tramos de tubería principales del sistema, que las dimensiones, el aislamiento y la continuidad eléctrica cumplen con las especificaciones.
 - d) La UV debe comprobar que los tubos recubiertos y recubrimientos aplicados en campo corresponden con las especificaciones del certificado de producto.
 - La UV debe verificar los procesos diferentes de aplicación de recubrimientos en campo y sus propiedades cuando ya están aplicados.
 - f) La UV debe verificar que los recubrimientos hayan sido inspeccionados visualmente y revisados con un detector de fallas de aislamiento con alta tensión antes de bajar la tubería en las zanjas.
 - g) La UV debe verificar la ubicación y el cumplimiento de especificaciones de las camas anódicas; asimismo, que los ánodos galvánicos y los ánodos inertes estén cubiertos totalmente por el material de relleno y que la conexión eléctrica con la tubería esté en buenas condiciones.
 - La UV debe verificar los resultados de las pruebas preoperativas con el fin de confirmar que se cumplen las condiciones del diseño, y que se realizan los ajustes operacionales del sistema.
 - i) La UV debe verificar los perfiles de potenciales de polarización obtenidos conforme con el inciso 3.6 del Apéndice II de esta NOM, sobre la base de los valores medidos de potenciales tubo / suelo, que la UV debe registrar en el formato siguiente:

Potencial de protección

Ubicación de la estación de registro eléctrico		
Tubería enterrada o sumergida en agua dulce o salada		
Electrodo de referencia	Cobre / sulfato de cobre o plata / cloruro de plata	
Potencial de protección	Inciso 3.5 a) o b) del Apéndice II de esta NOM	

Cambios de potencial por corriente impresa

Cambio de potencial de polarización	Inciso 3.5 c) del Apéndice II de esta NOM
Potencial en el punto de impresión	Inciso 3.7 del Apéndice II de esta NOM

- j) La UV debe verificar que el control de instrumentos y equipos de medición asegure que siempre se tengan disponibles instrumentos y equipos en condiciones adecuadas para su uso.
- k) La UV debe verificar que todos los instrumentos y equipos de medición tengan certificado de calibración vigente.
- La UV debe verificar que los electrodos de referencia utilizados en las mediciones de diferencias de potencial eléctrico tengan certificado vigente de cumplimiento con las normas aplicables y que su funcionamiento es revisado periódicamente, conforme con el inciso 3.8.1 del Apéndice II de esta NOM.
- m) La UV debe verificar las mediciones de las fuentes de corriente impresa conforme con el inciso 3.8.3 del Apéndice II de esta NOM, y que éstas cumplen con las especificaciones del certificado o registro del equipo bajo las condiciones siguientes:
 - i. En vacío y a carga plena.
 - ii. Sobrecarga y corto circuito en fuentes con regulación automática.
 - iii. Calentamiento a carga plena.
 - iv. Aislamiento eléctrico antes y después de la prueba de rigidez dieléctrica.
 - v. Rigidez dieléctrica.

n) La UV debe verificar que los manuales de procedimientos de operación y mantenimiento, seguridad y aseguramiento de calidad del sistema se encuentren en el lugar de trabajo y que son conocidos y aplicados correctamente por el personal encargado de realizar en campo las actividades descritas en dichos procedimientos.

8. Monitoreo, detección y clasificación de fugas de gas natural y gas LP en ductos

La UV debe realizar la revisión de información documental y la verificación en campo del programa de monitoreo, detección y clasificación de fugas de gas natural y gas LP en ductos. Dicha revisión debe considerar al menos, los aspectos siguientes:

- A. Procedimientos y métodos de monitoreo y detección de fugas
- B. Clasificación y control de fugas
- C. Programas de monitoreo de fugas y registros de resultados
- 8.1 Revisión de información documental

La UV debe verificar que el distribuidor cuente con la documentación completa para el monitoreo, detección, clasificación y control de fugas del sistema de distribución en su totalidad. Para llevar a cabo esta verificación la UV debe revisar, al menos los documentos siguientes:

A. Procedimientos y métodos

- **8.1.1** La UV debe verificar que los procedimientos y métodos documentados por el distribuidor para realizar el monitoreo y detección de fugas sean completos y adecuados para las características del sistema de distribución. Estos procedimientos deben considerar, entre otros, los aspectos siguientes:
 - a) El procedimiento de control de instrumentos indicadores de gas combustible y de instrumentos de medición debe prevenir que accidentalmente sean utilizados instrumentos en malas condiciones y asegurar que siempre se tengan instrumentos buenos disponibles para su uso.
 - b) El procedimiento para la capacitación y calificación del personal para realizar el monitoreo, detección, clasificación y control de fugas y la documentación que demuestre la aptitud del personal calificado
 - c) El procedimiento para la autoevaluación de la aplicación del programa de monitoreo, detección, clasificación y control de fugas, así como el registro de los resultados de la aplicación de dicha autoevaluación.
 - d) El procedimiento para obtener la tendencia de los resultados de la autoevaluación. Esta tendencia debe mostrar una mejora continua en las condiciones de seguridad del sistema de distribución de gas.
- **8.1.1.1** La UV debe comprobar que los procedimientos y métodos de monitoreo y detección de fugas del sistema de gas cumplen con la NOM, para lo cual debe verificar que dichos procedimientos y métodos cumplen, por lo menos, con los requisitos indicados en la Parte 1.- Normas de referencia de la tabla A. Esta contiene el resumen de los requisitos que deben verificarse para la evaluación de la conformidad con la NOM-003-SECRE-2002. En la Parte 2.- Documentos de consulta de la misma tabla A están indicados documentos de reconocida validez y amplia aplicación en la industria del gas natural, que la UV puede consultar para tener un conocimiento más amplio del tema

Tabla A.- Resumen de requisitos mínimos de los procedimientos y métodos de monitoreo y detección de fugas para la evaluación de la conformidad del sistema de distribución de gas

Parte 1 Normas de referencia		Parte 2 Documentos de consulta	
Procedimientos y métodos	NOM-003-SECRE-2002, Apéndice III	CFR 49 DOT 192-2000	ASME B 31.8-99
Atención de reportes de fugas	3.1	192.613 y 192.614	
Olores o indicaciones de combustibles	3.1.1	192.613 y 192.614	
Recursos humanos	3.2.1		

Recursos materiales	3.2.2	
Indicadores de gas combustible	3.3.1	Appendix M; M4
Mantenimiento de Indicadores de gas combustible	4.1	Appendix M; M4
Calibración de Indicadores de gas combustible	4.2	Appendix M; M4
Detección sobre la superficie del suelo	3.3.1.1	Appendix M; M3
Detección debajo de la superficie del suelo	3.3.1.2	Appendix M; M3
Detección por inspección visual de la vegetación	3.3.2	Appendix M; M3
Detección por caída de presión	3.3.3	Appendix M; M3
Detección por burbujeo	3.3.4	Appendix M; M3
Detección por ultrasonido	3.3.5	Appendix M; M3

NOTA.- La Parte 2.- Documentos de consulta de la tabla anterior no es de aplicación obligatoria ni es obligatorio el cumplimiento de sus especificaciones.

B. Clasificación y control de fugas

8.1.2 La UV debe comprobar que los procedimientos para la clasificación y control de fugas del sistema de gas cumplen con la NOM, para lo cual debe verificar que dichos procedimientos cumplen, por lo menos, con los requisitos indicados en la Parte 1.- Normas de referencia de la tabla B. Esta contiene el resumen de los requisitos que deben verificarse para la evaluación de la conformidad con la NOM-003-SECRE-2002. En la Parte 2.- Documentos de consulta de la misma tabla B están indicados documentos de reconocida validez y amplia aplicación en la industria del gas natural, que la UV puede consultar para tener un conocimiento más amplio del tema

Tabla B.- Resumen de requisitos mínimos de los procedimientos para la clasificación y control de fugas para la evaluación de la conformidad del sistema de distribución de gas

Parte 1 Normas de referencia		Parte 2 Documentos de consulta	
Procedimiento	NOM-003-SECRE-2002, Apéndice III	CFR 49 DOT 192-2000	ASME B 31.8-99
Descripción, ejemplos y criterios de acción para fugas de grado 1	5.1.1 y Tabla 2		Appendix M; M5
Descripción, ejemplos y criterios de acción para fugas de grado 2	5.1.2 y Tabla 3		Appendix M; M5
Descripción, ejemplos y criterios de acción para fugas de grado 3	5.1.3 y Tabla 4		Appendix M; M5

NOTA.- La Parte 2.- Documentos de consulta de la tabla anterior no es de aplicación obligatoria ni es obligatorio el cumplimiento de sus especificaciones.

C. Programas de monitoreo de fugas y registros de resultados

8.1.3 La UV debe verificar que el distribuidor cuenta con programas para realizar monitoreos de fugas con equipos detectores de gas combustible de la atmósfera en los registros y pozos de visita de estructuras subterráneas tales como sistemas de gas, electricidad, telefónico, fibra óptica, semáforos, drenaje y agua, en ranuras y fracturas del piso de calles y banquetas, y en general en todos los lugares que propicien la detección de fugas de gas. Todas las tuberías del sistema localizadas en:

- a) Clase 3 y 4 se deben inspeccionar al menos una vez al año calendario. El intervalo entre dos inspecciones sucesivas no debe exceder quince meses.
- b) Clase 1 y 2 el intervalo entre dos inspecciones sucesivas no debe exceder cinco años. Si las tuberías de acero no tienen protección catódica o no se hace monitoreo del sistema de protección catódica, el intervalo entre dos inspecciones sucesivas no debe ser mayor de tres años.

8.1.3.1 La UV debe comprobar que los programas de monitoreo de fugas y registros de resultados para el sistema de gas cumplen con la NOM, para lo cual debe verificar que dichos procedimientos cumplen, por lo menos, con los requisitos indicados en la Parte 1.- Normas de referencia de la tabla C. Esta contiene el resumen de los requisitos que deben verificarse para la evaluación de la conformidad con la NOM-003-SECRE-2002. En la Parte 2.- Documentos de consulta de la misma tabla C están indicados documentos de reconocida validez y amplia aplicación en la industria del gas natural, que la UV puede consultar para tener un conocimiento más amplio del tema

Tabla C.- Resumen de requisitos mínimos de los programas de monitoreo de fugas y registros de resultados para la evaluación de la conformidad para el sistema de distribución de gas

Parte 1 Normas de referencia		Parte 2 Documentos de consulta	
Característica	NOM-003-SECRE-2002, Apéndice III	CFR 49 DOT 192-2000	ASME B 31.8-99
Registro de fugas	6.1		
Registro de los monitoreos de fugas	6.2	192.721; 192.723	
Registro de las pruebas de caída de presión	6.2.1		
Autoevaluación	6.3		

NOTA.- La Parte 2.- Documentos de consulta de la tabla anterior no es de aplicación obligatoria ni es obligatorio el cumplimiento de sus especificaciones.

8.2 Verificación en campo

La UV debe verificar en campo que los procedimientos, métodos, programas y registros establecidos en los documentos examinados en conformidad con el inciso 8.1 Revisión de información documental se aplican en el sistema de distribución, para lo cual, una vez que termine la revisión documental, la UV debe confirmar que dichos documentos se encuentran en el lugar de trabajo de las personas encargadas de aplicarlos, y que dichas personas tienen los conocimientos adecuados para aplicarlos.

9. Documentos de consulta

Los documentos anotados en la parte 2 de las tablas del procedimiento para la evaluación son los siguientes:

- 9.1 American Gas Association (AGA).
- a) AGA Technical report No. 10, Steady Flow in gas pipelines fluid flow model.
- 9.2 American Petroleum Institute (API).
- a) API 1104-1999, Welding of pipelines and related facilities.
- b) API 5L-2000, Specification for line pipe.
- c) API RP 5L1-1996, Recommended practice for railroad transportation of line pipe.
- d) API RP 5LW-1996, Recommended practice for transportation of line pipe on barges and marine vessels.
- e) API 6D-1994, Specification for pipe lines valves.
- 9.3 American Society of Mechanical Engineers (ASME).
- a) ASME B 31.8-1999, Gas transmission and distribution piping systems.
- b) ASME BPV-2001, Boiler and Pressure Vessel code, section I, section VIII division I, section VIII division 2, section IX.
- c) ASME B 16.1-1998, Cast iron pipe flanges and flanged fittings.
- d) ASME B 16.5-1996, Pipe flanges and flanged fittings.
- e) ASME B 16.9-2001, Factory made wrought steel buttwelding fittings.

- f) ASME B 16.18-1984/Reaffirmed 1994, Cast copper alloy solder joint pressure fittings.
- g) ASME B 16.22-1995, Wrought copper and copper alloy solder joint pressure fittings.
- h) ASME B 16.25-1997, Buttwelding ends.
- i) ASME B 16.33-1990, Manually operated metallic gas valves for use in gas piping systems up to 125 psig, size ½" 2".
- j) ASME B 16.34-1996, Valves flanged, threaded and welding end.
- k) ASME B 16.38-1985/Reaffirmed 1994, Large metallic valves for gas distribution (manually operated NPS 2 ½" to 12", 125 psig max.)
- I) ASME B 16.40-1985/Reaffirmed 1994, Manually operated thermoplastic gas shut-offs and valves in gas distribution systems.
- 9.4 American Society for Testing and Materials (ASTM).
- a) ASTM B 32; Standard specification for solder metal
- b) ASTM A 53-1996, Standard specification for pipe, steel, black and hot dipped, zinc coated welded and seamless.
- c) ASTM A 106-1995, Standard specification for seamless carbon steel pipe for high temperature service.
- **d)** ASTM A 333/A 333M-1994, Standard specification for seamless and welded steel pipe for low temperature service.
- ASTM A 381-1993, Standard specification for metal arc welded steel pipe for use with high pressure transmission systems.
- **f)** ASTM A 671-1994, Standard specification for electric fusion welded steel pipe for atmospheric and lower temperatures.
- **g)** ASTM A 672-1994, Standard specification for electric fusion welded steel pipe for high pressure service at moderate temperatures.
- **h)** ASTM A 691-1993, Standard specification for carbon and alloy steel pipe, electric fusion welded for high-pressure service at high temperatures.
- i) ASTM B 813; Standard specification for liquid and paste fluxes for soldering of copper and copper alloy tube.
- j) ASTM B 828; Standard practice for making capillary joints by soldering of copper and copper alloys tube and fittings.
- **k)** ASTM B 837-1995, Standard specification for seamless copper tube for natural gas and Liquefied Petroleum (LP) gas distribution systems.
- I) ASTM D 1988-1991 (Reapproved 1995), Standard test method for Mercaptans in natural gas using length-of-stain detector tubes.
- m) ASTM D 2513-1999, Standard specification for thermoplastic gas pressure pipe, tubing and fittings.
- n) ASTM D 2657; Standard practice for heat fusion joining of polyolefin pipe and fittings.
- ASTM D 3261-1997, Standard specification for butt heat fusion polyethylene (PE) plastic fittings for polyethylene (PE) plastic pipe and tubing.
- **p)** ASTM D 2683-1995, Standard specification for socket type polyethylene fittings for outside diameter controlled polyethylene pipe and tubing.
- q) ASTM F 905-1996, Standard practice for qualification of polyethylene saddle fusion joints.
- r) ASTM F 1055-1995, Standard specification for electrofusion type polyethylene fittings for outside diameter controlled polyethylene pipe and tubing.

- **9.5** Government of the United States of America, Code of Federal Regulations (CFR), Title 49 Department of Transportation (DOT), Chapter 1. Research and special programs administration Part 192.
 - a) CFR 49 DOT 192-2000, Transportation of natural gas by pipeline: Minimum safety standards.
 - 9.6 Manufacturers standardization society of the valve and fittings industry (MSS).
 - a) MSS SP-44-1996 (R 2001), Steel pipe flanges.
 - **b)** MSS SP-75-1998, Specification for high test wrought welding fittings.
 - 9.7 National Association of Corrosion Engineers (NACE)
 - a) NACE RP 0169-1996, Standard Recommended Practice. Control of external corrosion on underground or submerged metallic piping systems.
 - b) NACE TM 0497-1997, Standard Test Method. Measurement techniques related to criteria for cathodic protection underground or submerged metallic piping systems.
 - 9.8 SEDIGAS, S.A.

Recomendación SEDIGAS RS-T-01-1991, Odorización de gases combustibles.